These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 26579772)
1. Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy. Lee HS; Seok C; Im W J Chem Theory Comput; 2015 Mar; 11(3):1255-66. PubMed ID: 26579772 [TBL] [Abstract][Full Text] [Related]
2. Design of Drug Efficacy Guided by Free Energy Simulations of the β Panel N; Vo DD; Kahlous NA; Hübner H; Tiedt S; Matricon P; Pacalon J; Fleetwood O; Kampen S; Luttens A; Delemotte L; Kihlberg J; Gmeiner P; Carlsson J Angew Chem Int Ed Engl; 2023 May; 62(22):e202218959. PubMed ID: 36914577 [TBL] [Abstract][Full Text] [Related]
3. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Kooistra AJ; Leurs R; de Esch IJ; de Graaf C J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor. Goetz A; Lanig H; Gmeiner P; Clark T J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Huber T; Menon S; Sakmar TP Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775 [TBL] [Abstract][Full Text] [Related]
6. Stereoselective binding of agonists to the β Plazinska A; Plazinski W Mol Biosyst; 2017 May; 13(5):910-920. PubMed ID: 28338133 [TBL] [Abstract][Full Text] [Related]
7. DIRECT-ID: An automated method to identify and quantify conformational variations--application to β2 -adrenergic GPCR. Lakkaraju SK; Lemkul JA; Huang J; MacKerell AD J Comput Chem; 2016 Feb; 37(4):416-25. PubMed ID: 26558323 [TBL] [Abstract][Full Text] [Related]
8. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation. Zhu Y; Yuan Y; Xiao X; Zhang L; Guo Y; Pu X J Mol Model; 2014 Nov; 20(11):2491. PubMed ID: 25342155 [TBL] [Abstract][Full Text] [Related]
9. Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation. Dong SS; Goddard WA; Abrol R Biophys J; 2016 Jun; 110(12):2618-2629. PubMed ID: 27332120 [TBL] [Abstract][Full Text] [Related]
10. Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations. Ranganathan A; Dror RO; Carlsson J Biochemistry; 2014 Nov; 53(46):7283-96. PubMed ID: 25347607 [TBL] [Abstract][Full Text] [Related]
11. Ligand-binding affinity of alternative conformers of human β Dilcan G; Doruker P; Akten ED Chem Biol Drug Des; 2019 May; 93(5):883-899. PubMed ID: 30637937 [TBL] [Abstract][Full Text] [Related]
12. Characterizing clinically relevant natural variants of GPCRs using computational approaches. Sengupta D; Sonar K; Joshi M Methods Cell Biol; 2017; 142():187-204. PubMed ID: 28964336 [TBL] [Abstract][Full Text] [Related]
13. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. Cang X; Du Y; Mao Y; Wang Y; Yang H; Jiang H J Phys Chem B; 2013 Jan; 117(4):1085-94. PubMed ID: 23298417 [TBL] [Abstract][Full Text] [Related]
14. Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations. Bai Q; Shao Y; Pan D; Zhang Y; Liu H; Yao X PLoS One; 2014; 9(9):e107837. PubMed ID: 25229694 [TBL] [Abstract][Full Text] [Related]
15. The dynamic process of β(2)-adrenergic receptor activation. Nygaard R; Zou Y; Dror RO; Mildorf TJ; Arlow DH; Manglik A; Pan AC; Liu CW; Fung JJ; Bokoch MP; Thian FS; Kobilka TS; Shaw DE; Mueller L; Prosser RS; Kobilka BK Cell; 2013 Jan; 152(3):532-42. PubMed ID: 23374348 [TBL] [Abstract][Full Text] [Related]
16. Fast, metadynamics-based method for prediction of the stereochemistry-dependent relative free energies of ligand-receptor interactions. Plazinska A; Plazinski W; Jozwiak K J Comput Chem; 2014 Apr; 35(11):876-82. PubMed ID: 24615679 [TBL] [Abstract][Full Text] [Related]
17. Differences between G-Protein-Stabilized Agonist-GPCR Complexes and their Nanobody-Stabilized Equivalents. Saleh N; Ibrahim P; Clark T Angew Chem Int Ed Engl; 2017 Jul; 56(31):9008-9012. PubMed ID: 28481446 [TBL] [Abstract][Full Text] [Related]
18. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors. Lakkaraju SK; Yu W; Raman EP; Hershfeld AV; Fang L; Deshpande DA; MacKerell AD J Chem Inf Model; 2015 Mar; 55(3):700-8. PubMed ID: 25692383 [TBL] [Abstract][Full Text] [Related]
19. Modeling GPCR active state conformations: the β(2)-adrenergic receptor. Simpson LM; Wall ID; Blaney FE; Reynolds CA Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626 [TBL] [Abstract][Full Text] [Related]
20. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. Gandhimathi A; Sowdhamini R J Biomol Struct Dyn; 2016 May; 34(5):952-70. PubMed ID: 26327576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]