These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Competition among fcc-like, double-layered flat, tubular cage, and close-packed structural motifs for medium-sized Au n (n = 21-28) clusters. Tian D; Zhao J J Phys Chem A; 2008 Apr; 112(14):3141-4. PubMed ID: 18311959 [TBL] [Abstract][Full Text] [Related]
4. Quantum sized gold nanoclusters with atomic precision. Qian H; Zhu M; Wu Z; Jin R Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781 [TBL] [Abstract][Full Text] [Related]
5. Probing the structural evolution of medium-sized gold clusters: Au(n)(-) (n = 27-35). Shao N; Huang W; Gao Y; Wang LM; Li X; Wang LS; Zeng XC J Am Chem Soc; 2010 May; 132(18):6596-605. PubMed ID: 20405837 [TBL] [Abstract][Full Text] [Related]
6. Unraveling the Atomic Structures of 10-Electron (10e) Thiolate-Protected Gold Nanoclusters: Three Au Liu P; Han W; Zheng M; Li W; Xu WW ACS Omega; 2021 Apr; 6(15):10497-10503. PubMed ID: 34056202 [TBL] [Abstract][Full Text] [Related]
7. Relativistic effects and the unique low-symmetry structures of gold nanoclusters. Huang W; Ji M; Dong CD; Gu X; Wang LM; Gong XG; Wang LS ACS Nano; 2008 May; 2(5):897-904. PubMed ID: 19206486 [TBL] [Abstract][Full Text] [Related]
8. Structural Evolution of Core-Shell Gold Nanoclusters: Au Pande S; Huang W; Shao N; Wang LM; Khetrapal N; Mei WN; Jian T; Wang LS; Zeng XC ACS Nano; 2016 Nov; 10(11):10013-10022. PubMed ID: 27794617 [TBL] [Abstract][Full Text] [Related]
10. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Mahmoud MA; Narayanan R; El-Sayed MA Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515 [TBL] [Abstract][Full Text] [Related]
11. Computational investigations into the structural and electronic properties of Cd Imran M; Saif MJ; Kuznetsov AE; Idrees N; Iqbal J; Tahir AA RSC Adv; 2019 Feb; 9(9):5091-5099. PubMed ID: 35514619 [TBL] [Abstract][Full Text] [Related]
12. The stability of small helical gold nanorods: a relativistic density functional study. Liu XJ; Hamilton I; Krawczyk RP; Schwerdtfeger P J Comput Chem; 2012 Jan; 33(3):311-8. PubMed ID: 22108955 [TBL] [Abstract][Full Text] [Related]
13. Atomically precise gold nanoclusters as new model catalysts. Li G; Jin R Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692 [TBL] [Abstract][Full Text] [Related]
14. Theoretical investigation of electronic structures and properties of C60-gold nanocontacts. Shukla MK; Dubey M; Leszczynski J ACS Nano; 2008 Feb; 2(2):227-34. PubMed ID: 19206622 [TBL] [Abstract][Full Text] [Related]
15. Preparation of iron and gold silicide nanodomains on silicon (111) by the reaction of gold, iron-gold core-shell, and alloy nanoparticles with triethylsilane. Dahal N; Wright JT; Willey TM; Meulenberg RW; Chikan V ACS Appl Mater Interfaces; 2010 Aug; 2(8):2238-47. PubMed ID: 20735094 [TBL] [Abstract][Full Text] [Related]
16. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells. Shi YL; Asefa T Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498 [TBL] [Abstract][Full Text] [Related]
17. Theoretical and experimental characterization of structures of MnAu nanoclusters in the size range of 1-3 nm. Zhou R; Wei X; He K; Shield JE; Sellmyer DJ; Zeng XC ACS Nano; 2011 Dec; 5(12):9966-76. PubMed ID: 22106816 [TBL] [Abstract][Full Text] [Related]
18. Size dependence of the structures and energetic and electronic properties of gold clusters. Li XB; Wang HY; Yang XD; Zhu ZH; Tang YJ J Chem Phys; 2007 Feb; 126(8):084505. PubMed ID: 17343456 [TBL] [Abstract][Full Text] [Related]
19. Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters. Yuan DW; Wang Y; Zeng Z J Chem Phys; 2005 Mar; 122(11):114310. PubMed ID: 15836218 [TBL] [Abstract][Full Text] [Related]
20. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core. Mednikov EG; Jewell MC; Dahl LF J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]