BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 26579901)

  • 1. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation.
    Bleiziffer P; Hesselmann A; Görling A
    J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme.
    Del Ben M; Hutter J; VandeVondele J
    J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks.
    Tahir MN; Zhu T; Shang H; Li J; Blum V; Ren X
    J Chem Theory Comput; 2022 Sep; 18(9):5297-5311. PubMed ID: 35959556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic energy gradients for the self-consistent direct random phase approximation.
    Thierbach A; Görling A
    J Chem Phys; 2020 Oct; 153(13):134113. PubMed ID: 33032399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.
    Peng D; Steinmann SN; van Aggelen H; Yang W
    J Chem Phys; 2013 Sep; 139(10):104112. PubMed ID: 24050333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Third-order corrections to random-phase approximation correlation energies.
    Hesselmann A
    J Chem Phys; 2011 May; 134(20):204107. PubMed ID: 21639424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.
    Ziegler T; Krykunov M; Autschbach J
    J Chem Theory Comput; 2014 Sep; 10(9):3980-6. PubMed ID: 26588541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.