These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 26579901)

  • 41. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dispersion interactions in density-functional theory: an adiabatic-connection analysis.
    Strømsheim MD; Kumar N; Coriani S; Sagvolden E; Teale AM; Helgaker T
    J Chem Phys; 2011 Nov; 135(19):194109. PubMed ID: 22112068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Singlet-triplet energy gaps for diradicals from particle-particle random phase approximation.
    Yang Y; Peng D; Davidson ER; Yang W
    J Phys Chem A; 2015 May; 119(20):4923-32. PubMed ID: 25891638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Communication: Analytic gradients in the random-phase approximation.
    Rekkedal J; Coriani S; Iozzi MF; Teale AM; Helgaker T; Pedersen TB
    J Chem Phys; 2013 Aug; 139(8):081101. PubMed ID: 24006965
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analytical Energy Gradients in Range-Separated Hybrid Density Functional Theory with Random Phase Approximation.
    Mussard B; Szalay PG; Ángyán JG
    J Chem Theory Comput; 2014 May; 10(5):1968-79. PubMed ID: 26580524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.
    Graf D; Beuerle M; Schurkus HF; Luenser A; Savasci G; Ochsenfeld C
    J Chem Theory Comput; 2018 May; 14(5):2505-2515. PubMed ID: 29658715
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry.
    Furche F; Perdew JP
    J Chem Phys; 2006 Jan; 124(4):044103. PubMed ID: 16460145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An efficient linear-scaling CCSD(T) method based on local natural orbitals.
    Rolik Z; Szegedy L; Ladjánszki I; Ladóczki B; Kállay M
    J Chem Phys; 2013 Sep; 139(9):094105. PubMed ID: 24028100
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low Scaling Algorithms for the Random Phase Approximation: Imaginary Time and Laplace Transformations.
    Kaltak M; Klimeš J; Kresse G
    J Chem Theory Comput; 2014 Jun; 10(6):2498-507. PubMed ID: 26580770
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analytic derivatives for the XYG3 type of doubly hybrid density functionals: Theory, implementation, and assessment.
    Su NQ; Zhang IY; Xu X
    J Comput Chem; 2013 Jul; 34(20):1759-74. PubMed ID: 23681975
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple but fully nonlocal correction to the random phase approximation.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Phys; 2011 Mar; 134(11):114110. PubMed ID: 21428610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-level ab initio investigations on structures and energetics of N2O clusters.
    Yeole SD; Sahu N; Gadre SR
    J Phys Chem A; 2013 Sep; 117(36):8591-8. PubMed ID: 23621643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory.
    Hesselmann A
    J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Van der waals interactions in molecular assemblies from first-principles calculations.
    Li Y; Lu D; Nguyen HV; Galli G
    J Phys Chem A; 2010 Feb; 114(4):1944-52. PubMed ID: 20043660
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel.
    Dixit A; Ángyán JG; Rocca D
    J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Random-Phase Approximation Methods.
    Chen GP; Voora VK; Agee MM; Balasubramani SG; Furche F
    Annu Rev Phys Chem; 2017 May; 68():421-445. PubMed ID: 28301757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.