These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26580039)
1. Correlation Energies from the Two-Component Random Phase Approximation. Kühn M J Chem Theory Comput; 2014 Feb; 10(2):623-33. PubMed ID: 26580039 [TBL] [Abstract][Full Text] [Related]
2. Communication: two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation. Krause K; Klopper W J Chem Phys; 2013 Nov; 139(19):191102. PubMed ID: 24320308 [TBL] [Abstract][Full Text] [Related]
3. Relativistic all-electron two-component self-consistent density functional calculations including one-electron scalar and spin-orbit effects. Peralta JE; Scuseria GE J Chem Phys; 2004 Apr; 120(13):5875-81. PubMed ID: 15267469 [TBL] [Abstract][Full Text] [Related]
4. Implementation of Two-Component Time-Dependent Density Functional Theory in TURBOMOLE. Kühn M; Weigend F J Chem Theory Comput; 2013 Dec; 9(12):5341-8. PubMed ID: 26592271 [TBL] [Abstract][Full Text] [Related]
5. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. Eshuis H; Yarkony J; Furche F J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696 [TBL] [Abstract][Full Text] [Related]
6. Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods. Armbruster MK; Weigend F; van Wüllen C; Klopper W Phys Chem Chem Phys; 2008 Apr; 10(13):1748-56. PubMed ID: 18350180 [TBL] [Abstract][Full Text] [Related]
7. Spin-orbit and electron correlation effects on the structure of EF3 (E = I, At, and element 117). Kim H; Choi YJ; Lee YS J Phys Chem B; 2008 Dec; 112(50):16021-9. PubMed ID: 19367904 [TBL] [Abstract][Full Text] [Related]
8. Two-Component Relativistic Equation-of-Motion Coupled-Cluster Methods for Excitation Energies and Ionization Potentials of Atoms and Molecules. Akinaga Y; Nakajima T J Phys Chem A; 2017 Feb; 121(4):827-835. PubMed ID: 28118002 [TBL] [Abstract][Full Text] [Related]
9. The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives. Wodyński A; Gryff-Keller A; Pecul M J Chem Theory Comput; 2013 Apr; 9(4):1909-17. PubMed ID: 26583542 [TBL] [Abstract][Full Text] [Related]
10. Excitation Energies from Real-Time Propagation of the Four-Component Dirac-Kohn-Sham Equation. Repisky M; Konecny L; Kadek M; Komorovsky S; Malkin OL; Malkin VG; Ruud K J Chem Theory Comput; 2015 Mar; 11(3):980-91. PubMed ID: 26579752 [TBL] [Abstract][Full Text] [Related]
11. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation. Burow AM; Bates JE; Furche F; Eshuis H J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901 [TBL] [Abstract][Full Text] [Related]
12. Spin densities in two-component relativistic density functional calculations: noncollinear versus collinear approach. Van Wüllen C J Comput Chem; 2002 Jun; 23(8):779-85. PubMed ID: 12012354 [TBL] [Abstract][Full Text] [Related]
13. Third-order Douglas-Kroll relativistic coupled-cluster theory through connected single, double, triple, and quadruple substitutions: applications to diatomic and triatomic hydrides. Hirata S; Yanai T; de Jong WA; Nakajima T; Hirao K J Chem Phys; 2004 Feb; 120(7):3297-310. PubMed ID: 15268484 [TBL] [Abstract][Full Text] [Related]
14. The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry. Wang F; Ziegler T; van Lenthe E; van Gisbergen S; Baerends EJ J Chem Phys; 2005 May; 122(20):204103. PubMed ID: 15945709 [TBL] [Abstract][Full Text] [Related]
15. Performance of relativistic effective core potentials in DFT calculations on actinide compounds. Odoh SO; Schreckenbach G J Phys Chem A; 2010 Feb; 114(4):1957-63. PubMed ID: 20039716 [TBL] [Abstract][Full Text] [Related]
16. Electronic spectrum of UO2(2+) and [UO2Cl4]2- calculated with time-dependent density functional theory. Pierloot K; van Besien E; van Lenthe E; Baerends EJ J Chem Phys; 2007 May; 126(19):194311. PubMed ID: 17523808 [TBL] [Abstract][Full Text] [Related]
17. A systematic sequence of relativistic approximations. Dyall KG J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355 [TBL] [Abstract][Full Text] [Related]
18. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms. Jiang H; Engel E J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of relativistic density functional methods applied to actinide species AcO(2)(2+) and AcF(6) for Ac = U, Np. García-Hernández M; Lauterbach C; Krüger S; Matveev A; Rösch N J Comput Chem; 2002 Jun; 23(8):834-46. PubMed ID: 12012360 [TBL] [Abstract][Full Text] [Related]
20. One-Electron Energies from the Two-Component GW Method. Kühn M; Weigend F J Chem Theory Comput; 2015 Mar; 11(3):969-79. PubMed ID: 26579751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]