These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26580039)
41. Orbit-orbit relativistic corrections to the pure vibrational non-Born-Oppenheimer energies of H(2). Stanke M; Kedziera D; Bubin S; Molski M; Adamowicz L J Chem Phys; 2008 Mar; 128(11):114313. PubMed ID: 18361577 [TBL] [Abstract][Full Text] [Related]
42. Time-dependent four-component relativistic density functional theory for excitation energies. Gao J; Liu W; Song B; Liu C J Chem Phys; 2004 Oct; 121(14):6658-66. PubMed ID: 15473721 [TBL] [Abstract][Full Text] [Related]
43. A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect. Wang F; Ziegler T J Chem Phys; 2005 Oct; 123(15):154102. PubMed ID: 16252937 [TBL] [Abstract][Full Text] [Related]
44. Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques. Michauk C; Gauss J J Chem Phys; 2007 Jul; 127(4):044106. PubMed ID: 17672680 [TBL] [Abstract][Full Text] [Related]
45. Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. Del Ben M; Hutter J; VandeVondele J J Chem Theory Comput; 2013 Jun; 9(6):2654-71. PubMed ID: 26583860 [TBL] [Abstract][Full Text] [Related]
46. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods. Mitin AV; van Wüllen C J Chem Phys; 2006 Feb; 124(6):64305. PubMed ID: 16483205 [TBL] [Abstract][Full Text] [Related]
47. Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. Knecht S; Repisky M; Jensen HJA; Saue T J Chem Phys; 2022 Sep; 157(11):114106. PubMed ID: 36137811 [TBL] [Abstract][Full Text] [Related]
48. Localization scheme for relativistic spinors. Ciupka J; Hanrath M; Dolg M J Chem Phys; 2011 Dec; 135(24):244101. PubMed ID: 22225138 [TBL] [Abstract][Full Text] [Related]
49. Localized exchange-correlation potential from second-order self-energy for accurate Kohn-Sham energy gap. Fabiano E; Della Sala F J Chem Phys; 2007 Jun; 126(21):214102. PubMed ID: 17567185 [TBL] [Abstract][Full Text] [Related]
50. Optimized Slater-type basis sets for the elements 1-118. Van Lenthe E; Baerends EJ J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913 [TBL] [Abstract][Full Text] [Related]
51. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives. Wodyński A; Pecul M J Chem Phys; 2014 Jan; 140(2):024319. PubMed ID: 24437889 [TBL] [Abstract][Full Text] [Related]
52. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study. Sinnecker S; Neese F J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624 [TBL] [Abstract][Full Text] [Related]
53. Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods. Cheng L J Chem Phys; 2015 Aug; 143(6):064301. PubMed ID: 26277132 [TBL] [Abstract][Full Text] [Related]
54. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation. Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871 [TBL] [Abstract][Full Text] [Related]
55. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation. Bleiziffer P; Hesselmann A; Görling A J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535 [TBL] [Abstract][Full Text] [Related]
56. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. Peterson KA; Shepler BC; Figgen D; Stoll H J Phys Chem A; 2006 Dec; 110(51):13877-83. PubMed ID: 17181347 [TBL] [Abstract][Full Text] [Related]
57. Calculation of zero-field splitting parameters: comparison of a two-component noncolinear spin-density-functional method and a one-component perturbational approach. Reviakine R; Arbuznikov AV; Tremblay JC; Remenyi C; Malkina OL; Malkin VG; Kaupp M J Chem Phys; 2006 Aug; 125(5):054110. PubMed ID: 16942206 [TBL] [Abstract][Full Text] [Related]
58. Linear complex polarization propagator in a four-component Kohn-Sham framework. Villaume S; Saue T; Norman P J Chem Phys; 2010 Aug; 133(6):064105. PubMed ID: 20707559 [TBL] [Abstract][Full Text] [Related]
59. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy. Roemelt M; Maganas D; DeBeer S; Neese F J Chem Phys; 2013 May; 138(20):204101. PubMed ID: 23742448 [TBL] [Abstract][Full Text] [Related]
60. Accurate quantum-chemical prediction of enthalpies of formation of small molecules in the gas phase. Klopper W; Noga J Chemphyschem; 2003 Jan; 4(1):32-48. PubMed ID: 12596464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]