These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 26580049)
1. Thermal Gradients on Graphene to Drive Nanoflake Motion. Becton M; Wang X J Chem Theory Comput; 2014 Feb; 10(2):722-30. PubMed ID: 26580049 [TBL] [Abstract][Full Text] [Related]
2. Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient. Cheng Y; Zhang G; Zhang Y; Chang T; Pei QX; Cai Y; Zhang YW Nanoscale; 2018 Jan; 10(4):1660-1666. PubMed ID: 29319094 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels. Wu C; Xu X; Qian T J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493 [TBL] [Abstract][Full Text] [Related]
6. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator. Lee E; Kang JW; Kim KS; Kwon OK J Nanosci Nanotechnol; 2016 Feb; 16(2):1596-602. PubMed ID: 27433628 [TBL] [Abstract][Full Text] [Related]
7. Temperature gradient-driven motion and assembly of two-dimensional (2D) materials on the liquid surface: a theoretical framework and molecular dynamics simulation. Wen Y; Liu Q; Liu Y Phys Chem Chem Phys; 2020 Oct; 22(41):24097-24108. PubMed ID: 33079103 [TBL] [Abstract][Full Text] [Related]
8. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces. Oyarzua E; Walther JH; Zambrano HA Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599 [TBL] [Abstract][Full Text] [Related]
9. Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nanoflakes. Shi H; Barnard AS; Snook IK Nanotechnology; 2012 Feb; 23(6):065707. PubMed ID: 22248810 [TBL] [Abstract][Full Text] [Related]
11. Thermophoretically driven water droplets on graphene and boron nitride surfaces. Rajegowda R; Kannam SK; Hartkamp R; Sathian SP Nanotechnology; 2018 May; 29(21):215401. PubMed ID: 29498625 [TBL] [Abstract][Full Text] [Related]
12. Programmable Transport of C60 by Straining Graphene Substrate. Vaezi M; Nejat Pishkenari H; Ejtehadi MR Langmuir; 2023 Mar; 39(12):4483-4494. PubMed ID: 36926912 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion. Yoon HM; Jung Y; Jun SC; Kondaraju S; Lee JS Nanoscale; 2015 Apr; 7(14):6295-303. PubMed ID: 25782533 [TBL] [Abstract][Full Text] [Related]
14. Enhanced hydrogen storage performance of graphene nanoflakes doped with Cr atoms: a DFT study. Xiang C; Li A; Yang S; Lan Z; Xie W; Tang Y; Xu H; Wang Z; Gu H RSC Adv; 2019 Aug; 9(44):25690-25696. PubMed ID: 35530093 [TBL] [Abstract][Full Text] [Related]
15. Directed motion of C60 on a graphene sheet subjected to a temperature gradient. Lohrasebi A; Neek-Amal M; Ejtehadi MR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):042601. PubMed ID: 21599222 [TBL] [Abstract][Full Text] [Related]
16. Thermal stability of graphene edge structure and graphene nanoflakes. Barnard AS; Snook IK J Chem Phys; 2008 Mar; 128(9):094707. PubMed ID: 18331110 [TBL] [Abstract][Full Text] [Related]
17. Rotation of nanoflake driven by strain gradient fields in locally-indented graphene. Khan MB; Wang S; Wang C; Chen S Nanotechnology; 2020 Jan; 31(1):015303. PubMed ID: 31519015 [TBL] [Abstract][Full Text] [Related]
18. Oscillatory Behavior of Graphene Nanoflake on Graphene Nanoribbon. Kang JW; Lee KW J Nanosci Nanotechnol; 2015 Feb; 15(2):1199-202. PubMed ID: 26353633 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon. Kang JW; Lee KW J Nanosci Nanotechnol; 2014 Dec; 14(12):9158-64. PubMed ID: 25971029 [TBL] [Abstract][Full Text] [Related]