These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 26580173)
1. A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Torres-Knoop A; Balaji SP; Vlugt TJ; Dubbeldam D J Chem Theory Comput; 2014 Mar; 10(3):942-52. PubMed ID: 26580173 [TBL] [Abstract][Full Text] [Related]
2. RASPA3: A Monte Carlo code for computing adsorption and diffusion in nanoporous materials and thermodynamics properties of fluids. Ran YA; Sharma S; Balestra SRG; Li Z; Calero S; Vlugt TJH; Snurr RQ; Dubbeldam D J Chem Phys; 2024 Sep; 161(11):. PubMed ID: 39282847 [TBL] [Abstract][Full Text] [Related]
3. Calculating Thermodynamic Factors for Diffusion Using the Continuous Fractional Component Monte Carlo Method. Hulikal Chakrapani T; Hajibeygi H; Moultos OA; Vlugt TJH J Chem Theory Comput; 2024 Jan; 20(1):333-347. PubMed ID: 38113860 [TBL] [Abstract][Full Text] [Related]
4. Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. Hens R; Rahbari A; Caro-Ortiz S; Dawass N; Erdős M; Poursaeidesfahani A; Salehi HS; Celebi AT; Ramdin M; Moultos OA; Dubbeldam D; Vlugt TJH J Chem Inf Model; 2020 Jun; 60(6):2678-2682. PubMed ID: 32275829 [TBL] [Abstract][Full Text] [Related]
5. DICE: A Monte Carlo Code for Molecular Simulation Including the Configurational Bias Monte Carlo Method. Cezar HM; Canuto S; Coutinho K J Chem Inf Model; 2020 Jul; 60(7):3472-3488. PubMed ID: 32470296 [TBL] [Abstract][Full Text] [Related]
6. In silico screening of metal-organic frameworks in separation applications. Krishna R; van Baten JM Phys Chem Chem Phys; 2011 Jun; 13(22):10593-616. PubMed ID: 21541371 [TBL] [Abstract][Full Text] [Related]
7. Assessment and Optimization of Configurational-Bias Monte Carlo Particle Swap Strategies for Simulations of Water in the Gibbs Ensemble. Bai P; Siepmann JI J Chem Theory Comput; 2017 Feb; 13(2):431-440. PubMed ID: 28001386 [TBL] [Abstract][Full Text] [Related]
8. Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene metathesis reaction system in various zeolites. Jakobtorweihen S; Hansen N; Keil FJ J Chem Phys; 2006 Dec; 125(22):224709. PubMed ID: 17176156 [TBL] [Abstract][Full Text] [Related]
9. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move. Shi W; Maginn EJ J Comput Chem; 2008 Nov; 29(15):2520-30. PubMed ID: 18478586 [TBL] [Abstract][Full Text] [Related]
10. Efficient configurational-bias Monte-Carlo simulations of chain molecules with "swarms" of trial configurations. Boon N J Chem Phys; 2018 Aug; 149(6):064109. PubMed ID: 30111122 [TBL] [Abstract][Full Text] [Related]
11. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. Poursaeidesfahani A; Hens R; Rahbari A; Ramdin M; Dubbeldam D; Vlugt TJH J Chem Theory Comput; 2017 Sep; 13(9):4452-4466. PubMed ID: 28737933 [TBL] [Abstract][Full Text] [Related]
12. Screening metal-organic frameworks for separation of pentane isomers. Krishna R; van Baten JM Phys Chem Chem Phys; 2017 Mar; 19(12):8380-8387. PubMed ID: 28282097 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface. Howes AJ; Radke CJ Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664 [TBL] [Abstract][Full Text] [Related]
14. New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. Polat HM; Salehi HS; Hens R; Wasik DO; Rahbari A; de Meyer F; Houriez C; Coquelet C; Calero S; Dubbeldam D; Moultos OA; Vlugt TJH J Chem Inf Model; 2021 Aug; 61(8):3752-3757. PubMed ID: 34383501 [TBL] [Abstract][Full Text] [Related]
15. Entropy effects during sorption of alkanes in zeolites. Krishna R; Smit B; Calero S Chem Soc Rev; 2002 May; 31(3):185-94. PubMed ID: 12122643 [TBL] [Abstract][Full Text] [Related]
16. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Thomas KM Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589 [TBL] [Abstract][Full Text] [Related]
17. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. Yang Q; Zhong C J Phys Chem B; 2006 Jan; 110(2):655-8. PubMed ID: 16471581 [TBL] [Abstract][Full Text] [Related]
18. Understanding adsorption and interactions of alkane isomer mixtures in isoreticular metal-organic frameworks. Zhang L; Wang Q; Wu T; Liu YC Chemistry; 2007; 13(22):6387-96. PubMed ID: 17508381 [TBL] [Abstract][Full Text] [Related]
19. Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites. Liu S; Yang X J Chem Phys; 2006 Jun; 124(24):244705. PubMed ID: 16821994 [TBL] [Abstract][Full Text] [Related]
20. Flexible polyelectrolyte simulations at the Poisson-Boltzmann level: a comparison of the kink-jump and multigrid configurational-bias Monte Carlo methods. Tsonchev S; Coalson RD; Liu A; Beck TL J Chem Phys; 2004 May; 120(20):9817-21. PubMed ID: 15267998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]