These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2658027)

  • 21. Biodegradation of monohalogenated alkanes by soil NH(3)-oxidizing bacteria.
    Duddleston KN; Arp DJ; Bottomley PJ
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):535-9. PubMed ID: 12172622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on separation of bacteria on the surface of mature manganese sand and the ability of oxidating Fe2+ and Mn2+].
    Guan XH; Zhou YL; Wang ZC; Lu M
    Huan Jing Ke Xue; 2011 Jan; 32(1):125-9. PubMed ID: 21404675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated aquifer systems.
    Zappi M; White K; Hwang HM; Bajpai R; Qasim M
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1818-30. PubMed ID: 11288310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Electron microscopic study of iron-manganese concretions from Lake Punnus-Iarvi].
    Dubinina GA; Deriugina ZP
    Dokl Akad Nauk SSSR; 1971 Nov; 201(3):714-6. PubMed ID: 5131116
    [No Abstract]   [Full Text] [Related]  

  • 26. [Hydrocarbons and chlorinated hydrocarbons in groundwater].
    Hanert HH
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():209-30. PubMed ID: 2658029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Microbial reduction of iron, manganese as well as other metals and their individual significance in environmental bioremediation].
    Zhu W; Lin X; Zhang Y
    Ying Yong Sheng Tai Xue Bao; 2002 Mar; 13(3):369-72. PubMed ID: 12132174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.
    Li C; Wang S; Du X; Cheng X; Fu M; Hou N; Li D
    Bioresour Technol; 2016 Nov; 220():76-84. PubMed ID: 27566515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Biological nature of iron-manganese crusts of soil-forming rocks in Sakhalin mountain soils].
    Khak-Mun T
    Mikrobiologiia; 1968; 37(4):749-53. PubMed ID: 5734427
    [No Abstract]   [Full Text] [Related]  

  • 31. Geomicrobiology of manganese(II) oxidation.
    Tebo BM; Johnson HA; McCarthy JK; Templeton AS
    Trends Microbiol; 2005 Sep; 13(9):421-8. PubMed ID: 16054815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Manganese-oxidizing microorganisms inhabiting the phylloplane].
    Bolotina IN; Mirchink TG
    Mikrobiologiia; 1975; 44(5):933-7. PubMed ID: 1207511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank.
    Cápiro NL; Da Silva ML; Stafford BP; Rixey WG; Alvarez PJ
    Environ Microbiol; 2008 Sep; 10(9):2236-44. PubMed ID: 18484998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Iron, manganese and cobalt levels in soil, pasture grass and bodies of young bulls after irrigation of the soil with waste water].
    Kośla T
    Pol Arch Weter; 1987; 24(4):587-96. PubMed ID: 3697343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Distribution of heterotrophic aerobic microflora and specially denitrifying and free-living nitrogen-fixing bacteria in the rhizosphere of rice (author's transl)].
    Roussos S; Garcia JL; Rinaudo G; Gauthier D
    Ann Microbiol (Paris); 1980; 131A(2):197-207. PubMed ID: 7387056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-situ nitrogen removal from the eutrophic water by microbial-plant integrated system.
    Chang HQ; Yang XE; Fang YY; Pu PM; Li ZK; Rengel Z
    J Zhejiang Univ Sci B; 2006 Jul; 7(7):521-31. PubMed ID: 16773725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization.
    Caracciolo AB; Grenni P; Ciccoli R; Di Landa G; Cremisini C
    Pest Manag Sci; 2005 Sep; 61(9):863-9. PubMed ID: 16015577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.