BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26580365)

  • 1. Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR.
    Vícha J; Straka M; Munzarová ML; Marek R
    J Chem Theory Comput; 2014 Apr; 10(4):1489-99. PubMed ID: 26580365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling.
    Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R
    J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.
    Vícha J; Komorovsky S; Repisky M; Marek R; Straka M
    J Chem Theory Comput; 2018 Jun; 14(6):3025-3039. PubMed ID: 29676906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Electronic Factors Responsible for Ligand Spin-Orbit NMR Shielding in Transition-Metal Complexes.
    Vícha J; Foroutan-Nejad C; Pawlak T; Munzarová ML; Straka M; Marek R
    J Chem Theory Comput; 2015 Apr; 11(4):1509-17. PubMed ID: 26574362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Relativistic Quantum-Chemical Analysis of the trans Influence on (1)H NMR Hydride Shifts in Square-Planar Platinum(II) Complexes.
    Greif AH; Hrobárik P; Hrobáriková V; Arbuznikov AV; Autschbach J; Kaupp M
    Inorg Chem; 2015 Aug; 54(15):7199-208. PubMed ID: 26181136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts.
    Bora PL; Novotný J; Ruud K; Komorovsky S; Marek R
    J Chem Theory Comput; 2019 Jan; 15(1):201-214. PubMed ID: 30485092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts.
    Novotny J; Komorovsky S; Marek R
    Acc Chem Res; 2024 May; 57(10):1467-1477. PubMed ID: 38687879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into trans-Ligand and Spin-Orbit Effects on Electronic Structure and Ligand NMR Shifts in Transition-Metal Complexes.
    Greif AH; Hrobárik P; Kaupp M
    Chemistry; 2017 Jul; 23(41):9790-9803. PubMed ID: 28338246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study and molecular orbital analysis of NMR shielding, spin-spin coupling, and electric field gradients of azido platinum complexes.
    Sutter K; Autschbach J
    J Am Chem Soc; 2012 Aug; 134(32):13374-85. PubMed ID: 22794134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR and EPR studies of the bis(pyridine) and bis(tert-butyl isocyanide) complexes of iron(III) octaethylchlorin.
    Cai S; Lichtenberger DL; Walker FA
    Inorg Chem; 2005 Mar; 44(6):1890-903. PubMed ID: 15762715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.
    Pawlak T; Munzarová ML; Pazderski L; Marek R
    J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic contributions from spin-orbit coupling to 29Si NMR chemical shifts in metallasilatrane complexes.
    Autschbach J; Sutter K; Truflandier LA; Brendler E; Wagler J
    Chemistry; 2012 Oct; 18(40):12803-13. PubMed ID: 22930544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds.
    Gordon CP; Raynaud C; Andersen RA; Copéret C; Eisenstein O
    Acc Chem Res; 2019 Aug; 52(8):2278-2289. PubMed ID: 31339693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.
    Schreckenbach G
    Inorg Chem; 2002 Dec; 41(25):6560-72. PubMed ID: 12470051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Frequency (13)C and (29)Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of Tl(I) and Pb(II): Decisive Role of Relativistic Effects.
    Vícha J; Marek R; Straka M
    Inorg Chem; 2016 Feb; 55(4):1770-81. PubMed ID: 26820039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.