BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2658037)

  • 1. Developments in in situ biorestoration of contaminated soil and groundwater in the Netherlands.
    Staps JJ
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():379-90. PubMed ID: 2658037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnology for in situ restoration of ground water contaminated by the petroleum industry.
    Thomas JM; Ward CH
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():345-65. PubMed ID: 2658035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Sanitizing contaminated soil and groundwater pipes by microbiological and physico-chemical methods].
    Werner P; Brauch HJ
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():247-60. PubMed ID: 2658031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Hydrocarbons and chlorinated hydrocarbons in groundwater].
    Hanert HH
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():209-30. PubMed ID: 2658029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Technical in situ methods and their environmental hygiene control during the biological purification of soil and groundwaters polluted by organic halogens].
    Hanert HH; Harborth P; Lehmann M; Windt E; Rinkel U; Scheibel HJ; Hoppenheidt K; Rose H
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():231-45. PubMed ID: 2658030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrocarbon degradation in soils and methods for soil biotreatment.
    Morgan P; Watkinson RJ
    Crit Rev Biotechnol; 1989; 8(4):305-33. PubMed ID: 2650885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biotechnological principles and environmental hygiene aspects of in situ sanitation methods in soil and groundwater areas].
    Filip Z; Milde G
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():11-37. PubMed ID: 2658024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ecodynamic processes in soil and groundwater conductors under the influence of pesticides].
    Klein G
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 79():511-25; discussion 581-6. PubMed ID: 2756385
    [No Abstract]   [Full Text] [Related]  

  • 9. Research for ground-water quality management with an emphasis on in situ biorestoration.
    Hall CW
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():261-71. PubMed ID: 2658032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollution potential of oil-contaminated soil on groundwater resources in Kuwait.
    Literathy P; Quinn M; Al-Rashed M
    Water Sci Technol; 2003; 47(7-8):259-65. PubMed ID: 12793688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.
    Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU
    Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated aquifer systems.
    Zappi M; White K; Hwang HM; Bajpai R; Qasim M
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1818-30. PubMed ID: 11288310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.
    Płaza GA; Jangid K; Lukasik K; Nałecz-Jawecki G; Berry CJ; Brigmon RL
    Bull Environ Contam Toxicol; 2008 Oct; 81(4):329-33. PubMed ID: 18663400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microbiologic/hygienic evaluation of the risk potential of bacteria from soil and water sources in combination with biotechnologic risks of soil restoration].
    Dott W; Kämpfer P
    Zentralbl Hyg Umweltmed; 1997 Aug; 200(2-3):163-71. PubMed ID: 9636987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater.
    Langwaldt JH; Puhakka JA
    Water Res; 2003 Mar; 37(6):1378-84. PubMed ID: 12598200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and identification of bacteria from petroleum derivatives contaminated soil.
    Lebkowska M; Karwowska E; Miaśkiewicz E
    Acta Microbiol Pol; 1995; 44(3-4):297-303. PubMed ID: 8934669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ bioremediation of monoaromatic pollutants in groundwater: a review.
    Farhadian M; Vachelard C; Duchez D; Larroche C
    Bioresour Technol; 2008 Sep; 99(13):5296-308. PubMed ID: 18054222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of synthetic organic chemicals in soil-groundwater systems.
    Pancorbo OC; Varney TC
    Vet Hum Toxicol; 1986 Apr; 28(2):127-43. PubMed ID: 3518221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of alkyllead compounds to inorganic lead in contaminated soil.
    Gallert C; Winter J
    Water Res; 2004 Nov; 38(19):4204-12. PubMed ID: 15491668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.