These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26580512)
1. An optical sensing composite for cysteine detection using up-conversion nanoparticles and a rhodamine-derived chemosensor: Construction, characterization, photophysical feature and sensing performance. Kai S; Cheng-Wen L; Yi-Nan D; Tian L; Guang-Ye W; Jing-Mei L; Li-Quan G Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():81-7. PubMed ID: 26580512 [TBL] [Abstract][Full Text] [Related]
2. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Ni J; Shan C; Li B; Zhang L; Ma H; Luo Y; Song H Chem Commun (Camb); 2015 Sep; 51(74):14054-6. PubMed ID: 26247372 [TBL] [Abstract][Full Text] [Related]
3. Characterization and cysteine sensing performance of nanocomposites based on up-conversion excitation host and rhodamine-derived probes. Yuqing Z; Yi X; Lihua L; Juanjuan M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():134-142. PubMed ID: 29028505 [TBL] [Abstract][Full Text] [Related]
4. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance. Lin C; Zhigang F Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():195-202. PubMed ID: 27912179 [TBL] [Abstract][Full Text] [Related]
5. Two rhodamine derived chemosensors excited by up-conversion lattice for cysteine detection: Synthesis, characterization and sensing behavior. Pu W; Lisha W; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():223-30. PubMed ID: 26852112 [TBL] [Abstract][Full Text] [Related]
6. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Zhang J; Wang S; Gao N; Feng D; Wang L; Chen H Biosens Bioelectron; 2015 Oct; 72():282-7. PubMed ID: 25996781 [TBL] [Abstract][Full Text] [Related]
7. Preparation, characterization and Hg(II)-sensing behavior of an up-conversion nanocomposite grafted by a rhodamine derived probe: a potential application for eco-industrial park. Dong-sheng Z; Da-shun Z; Hai-yan S; Zhang K Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():1062-7. PubMed ID: 24161869 [TBL] [Abstract][Full Text] [Related]
8. Shell thickness dependence of upconversion luminescence of β-NaYF4:Yb, Er/β-NaYF4 core-shell nanocrystals. Liu L; Qin F; Zhao H; Lv T; Zhang Z; Cao W Opt Lett; 2013 Jun; 38(12):2101-3. PubMed ID: 23938990 [TBL] [Abstract][Full Text] [Related]
9. Super Bright Red Upconversion in NaErF Joshi R; Perala RS; Shelar SB; Ballal A; Singh BP; Ningthoujam RS ACS Appl Mater Interfaces; 2021 Jan; 13(2):3481-3490. PubMed ID: 33347289 [TBL] [Abstract][Full Text] [Related]
10. A facile synthesis of small-sized and monodisperse hexagonal NaYF4:Yb3+,Er3+ nanocrystals. Li D; Shao Q; Dong Y; Jiang J Chem Commun (Camb); 2014 Dec; 50(97):15316-8. PubMed ID: 25347526 [TBL] [Abstract][Full Text] [Related]
11. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification. Li H; Wang L Analyst; 2013 Mar; 138(5):1589-95. PubMed ID: 23353928 [TBL] [Abstract][Full Text] [Related]
12. Environmental and Excitation Power Effects on the Ratiometric Upconversion Luminescence Based Temperature Sensing Using Nanocrystalline NaYF Hyppänen I; Perälä N; Arppe R; Schäferling M; Soukka T Chemphyschem; 2017 Mar; 18(6):692-701. PubMed ID: 28071852 [TBL] [Abstract][Full Text] [Related]
13. A strategy for simultaneously realizing the cubic-to-hexagonal phase transition and controlling the small size of NaYF4:Yb3+,Er3+ nanocrystals for in vitro cell imaging. Wang ZL; Hao J; Chan HL; Wong WT; Wong KL Small; 2012 Jun; 8(12):1863-8. PubMed ID: 22467196 [TBL] [Abstract][Full Text] [Related]
14. The influence of NaYF₄:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles. Challenor M; Gong P; Lorenser D; House MJ; Woodward RC; St Pierre T; Fitzgerald M; Dunlop SA; Sampson DD; Iyer KS Dalton Trans; 2014 Nov; 43(44):16780-7. PubMed ID: 25283597 [TBL] [Abstract][Full Text] [Related]
15. Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Shen J; Sun LD; Zhang YW; Yan CH Chem Commun (Camb); 2010 Aug; 46(31):5731-3. PubMed ID: 20585692 [TBL] [Abstract][Full Text] [Related]
16. Separation and phase transition investigation of Yb3+/Er3+ co-doped NaYF4 nanoparticles. Song S; Kuang Y; Liu J; Yang Q; Luo L; Sun X Dalton Trans; 2013 Oct; 42(37):13315-8. PubMed ID: 23929273 [TBL] [Abstract][Full Text] [Related]
17. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor. Joshi C; Dwivedi A; Rai SB Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():451-6. PubMed ID: 24751781 [TBL] [Abstract][Full Text] [Related]
18. 3,5-Dinitrobenzoic acid-capped upconverting nanocrystals for the selective detection of melamine. Hazra C; Adusumalli VN; Mahalingam V ACS Appl Mater Interfaces; 2014 May; 6(10):7833-9. PubMed ID: 24742261 [TBL] [Abstract][Full Text] [Related]
19. Enhancing upconversion luminescence of NaYF4:Yb/Er nanocrystals by Mo(3+) doping and their application in bioimaging. Yin D; Wang C; Ouyang J; Song K; Liu B; Cao X; Zhang L; Han Y; Long X; Wu M Dalton Trans; 2014 Aug; 43(31):12037-43. PubMed ID: 24979546 [TBL] [Abstract][Full Text] [Related]
20. Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase. Yu W; Xu W; Song H; Zhang S Dalton Trans; 2014 Apr; 43(16):6139-47. PubMed ID: 24577323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]