These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26580537)

  • 1. Quasiparticle Level Alignment for Photocatalytic Interfaces.
    Migani A; Mowbray DJ; Zhao J; Petek H; Rubio A
    J Chem Theory Comput; 2014 May; 10(5):2103-13. PubMed ID: 26580537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Level alignment of a prototypical photocatalytic system: methanol on TiO2(110).
    Migani A; Mowbray DJ; Iacomino A; Zhao J; Petek H; Rubio A
    J Am Chem Soc; 2013 Aug; 135(31):11429-32. PubMed ID: 23865780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).
    Migani A; Mowbray DJ; Zhao J; Petek H
    J Chem Theory Comput; 2015 Jan; 11(1):239-51. PubMed ID: 26574222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic/inorganic hybrid materials: challenges for ab initio methodology.
    Draxl C; Nabok D; Hannewald K
    Acc Chem Res; 2014 Nov; 47(11):3225-32. PubMed ID: 25171272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling energy level alignment at organic interfaces and density functional theory.
    Flores F; Ortega J; Vázquez H
    Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces.
    Willenbockel M; Lüftner D; Stadtmüller B; Koller G; Kumpf C; Soubatch S; Puschnig P; Ramsey MG; Tautz FS
    Phys Chem Chem Phys; 2015 Jan; 17(3):1530-48. PubMed ID: 25475998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of the G
    Morales-García Á; Valero R; Illas F
    J Chem Theory Comput; 2017 Aug; 13(8):3746-3753. PubMed ID: 28641004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.
    Patrick CE; Giustino F
    Phys Rev Lett; 2012 Sep; 109(11):116801. PubMed ID: 23005661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.
    Sai N; Gearba R; Dolocan A; Tritsch JR; Chan WL; Chelikowsky JR; Leung K; Zhu X
    J Phys Chem Lett; 2012 Aug; 3(16):2173-7. PubMed ID: 26295767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular electronic level alignment at weakly coupled organic film/metal interfaces.
    Zhao J; Feng M; Dougherty DB; Sun H; Petek H
    ACS Nano; 2014 Oct; 8(10):10988-97. PubMed ID: 25303040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined spectroscopic characterization of electron transfer at hybrid CuPcF(16)/GaAs semiconductor interfaces.
    Cabanillas-Gonzalez J; Egelhaaf HJ; Brambilla A; Sessi P; Duò L; Finazzi M; Ciccacci F; Lanzani G
    Nanotechnology; 2008 Oct; 19(42):424010. PubMed ID: 21832670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding energy-level alignment in donor-acceptor/metal interfaces from core-level shifts.
    El-Sayed A; Borghetti P; Goiri E; Rogero C; Floreano L; Lovat G; Mowbray DJ; Cabellos JL; Wakayama Y; Rubio A; Ortega JE; de Oteyza DG
    ACS Nano; 2013 Aug; 7(8):6914-20. PubMed ID: 23883347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decacyclene Trianhydride at Functional Interfaces: An Ideal Electron Acceptor Material for Organic Electronics.
    de Oteyza DG; Garcia-Lastra JM; Toma FM; Borghetti P; Floreano L; Verdini A; Cossaro A; Pho TV; Wudl F; Ortega JE
    J Phys Chem Lett; 2016 Jan; 7(1):90-5. PubMed ID: 26651535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.
    Zou Y; Mao H; Meng Q; Zhu D
    J Chem Phys; 2016 Feb; 144(8):084706. PubMed ID: 26931717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural heterogeneity and dynamics of dyes on TiO2: implications for charge transfer across organic-inorganic interfaces.
    Christianson JR; Schmidt JR
    Phys Chem Chem Phys; 2015 Feb; 17(5):3731-40. PubMed ID: 25557767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size Effects in the Interface Level Alignment of Dye-Sensitized TiO2 Clusters.
    Marom N; Körzdörfer T; Ren X; Tkatchenko A; Chelikowsky JR
    J Phys Chem Lett; 2014 Jul; 5(14):2395-401. PubMed ID: 26277805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.