These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 26580606)
1. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors. Zhang X; de Milito A; Olofsson MH; Gullbo J; D'Arcy P; Linder S Int J Mol Sci; 2015 Nov; 16(11):27313-26. PubMed ID: 26580606 [TBL] [Abstract][Full Text] [Related]
2. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Zhang X; Fryknäs M; Hernlund E; Fayad W; De Milito A; Olofsson MH; Gogvadze V; Dang L; Påhlman S; Schughart LA; Rickardson L; D'Arcy P; Gullbo J; Nygren P; Larsson R; Linder S Nat Commun; 2014; 5():3295. PubMed ID: 24548894 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria and cancer chemoresistance. Guerra F; Arbini AA; Moro L Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329 [TBL] [Abstract][Full Text] [Related]
4. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. Amoedo ND; Obre E; Rossignol R Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330 [TBL] [Abstract][Full Text] [Related]
5. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids. Senkowski W; Jarvius M; Rubin J; Lengqvist J; Gustafsson MG; Nygren P; Kultima K; Larsson R; Fryknäs M Cell Chem Biol; 2016 Nov; 23(11):1428-1438. PubMed ID: 27984028 [TBL] [Abstract][Full Text] [Related]
6. Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells. Gao C; Shen Y; Jin F; Miao Y; Qiu X PLoS One; 2016; 11(5):e0154576. PubMed ID: 27167619 [TBL] [Abstract][Full Text] [Related]
7. Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. Marín-Hernández Á; Gallardo-Pérez JC; Hernández-Reséndiz I; Del Mazo-Monsalvo I; Robledo-Cadena DX; Moreno-Sánchez R; Rodríguez-Enríquez S J Cell Physiol; 2017 Jun; 232(6):1346-1359. PubMed ID: 27661776 [TBL] [Abstract][Full Text] [Related]
8. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Rohwer N; Cramer T Drug Resist Updat; 2011 Jun; 14(3):191-201. PubMed ID: 21466972 [TBL] [Abstract][Full Text] [Related]
9. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids. Mandujano-Tinoco EA; Gallardo-Pérez JC; Marín-Hernández A; Moreno-Sánchez R; Rodríguez-Enríquez S Biochim Biophys Acta; 2013 Mar; 1833(3):541-51. PubMed ID: 23195224 [TBL] [Abstract][Full Text] [Related]
10. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Wenzel C; Riefke B; Gründemann S; Krebs A; Christian S; Prinz F; Osterland M; Golfier S; Räse S; Ansari N; Esner M; Bickle M; Pampaloni F; Mattheyer C; Stelzer EH; Parczyk K; Prechtl S; Steigemann P Exp Cell Res; 2014 Apr; 323(1):131-143. PubMed ID: 24480576 [TBL] [Abstract][Full Text] [Related]
11. Cancer stem cell metabolism: a potential target for cancer therapy. Deshmukh A; Deshpande K; Arfuso F; Newsholme P; Dharmarajan A Mol Cancer; 2016 Nov; 15(1):69. PubMed ID: 27825361 [TBL] [Abstract][Full Text] [Related]
12. Restoration of mitochondria function as a target for cancer therapy. Bhat TA; Kumar S; Chaudhary AK; Yadav N; Chandra D Drug Discov Today; 2015 May; 20(5):635-43. PubMed ID: 25766095 [TBL] [Abstract][Full Text] [Related]
13. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664 [TBL] [Abstract][Full Text] [Related]
14. Eradicating Quiescent Tumor Cells by Targeting Mitochondrial Bioenergetics. Zhang X; De Milito A; Demiroglu-Zergeroglu A; Gullbo J; D'Arcy P; Linder S Trends Cancer; 2016 Nov; 2(11):657-663. PubMed ID: 28741504 [TBL] [Abstract][Full Text] [Related]
15. Current and upcoming mitochondrial targets for cancer therapy. Kim HK; Noh YH; Nilius B; Ko KS; Rhee BD; Kim N; Han J Semin Cancer Biol; 2017 Dec; 47():154-167. PubMed ID: 28627410 [TBL] [Abstract][Full Text] [Related]
16. Oxidative phosphorylation as a target to arrest malignant neoplasias. Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment. Koncošová M; Vrzáčková N; Křížová I; Tomášová P; Rimpelová S; Dvořák A; Vítek L; Rumlová M; Ruml T; Zelenka J Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639130 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. De Luca A; Fiorillo M; Peiris-Pagès M; Ozsvari B; Smith DL; Sanchez-Alvarez R; Martinez-Outschoorn UE; Cappello AR; Pezzi V; Lisanti MP; Sotgia F Oncotarget; 2015 Jun; 6(17):14777-95. PubMed ID: 26087310 [TBL] [Abstract][Full Text] [Related]
19. Clinical development of cancer therapeutics that target metabolism. Clem BF; O'Neal J; Klarer AC; Telang S; Chesney J QJM; 2016 Jun; 109(6):367-72. PubMed ID: 26428335 [TBL] [Abstract][Full Text] [Related]
20. Promising strategy developed to target drug-resistant cancer cells. Thorne J Future Med Chem; 2014 Apr; 6(6):603. PubMed ID: 25028759 [No Abstract] [Full Text] [Related] [Next] [New Search]