These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26580752)

  • 1. Description of Polar Chemical Bonds from the Quantum Mechanical Interference Perspective.
    Fantuzzi F; Nascimento MA
    J Chem Theory Comput; 2014 Jun; 10(6):2322-32. PubMed ID: 26580752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of the chemical bond and origin of the inverted dipole moment in boron fluoride: a generalized valence bond approach.
    Fantuzzi F; Cardozo TM; Nascimento MA
    J Phys Chem A; 2015 May; 119(21):5335-43. PubMed ID: 25531385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are One-Electron Bonds Any Different from Standard Two-Electron Covalent Bonds?
    Sousa DWO; Nascimento MAC
    Acc Chem Res; 2017 Sep; 50(9):2264-2272. PubMed ID: 28786664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of quantum-mechanical interference and quasi-classical effects in conjugated hydrocarbons.
    Fantuzzi F; Cardozo TM; Nascimento MA
    Phys Chem Chem Phys; 2012 Apr; 14(16):5479-88. PubMed ID: 22410865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy partitioning for generalized product functions: the interference contribution to the energy of generalized valence bond and spin coupled wave functions.
    Cardozo TM; Nascimento MA
    J Chem Phys; 2009 Mar; 130(10):104102. PubMed ID: 19292518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nature of the Singlet and Triplet States of Cyclobutadiene as Revealed by Quantum Interference.
    Fantuzzi F; Cardozo TM; Nascimento MA
    Chemphyschem; 2016 Jan; 17(2):288-95. PubMed ID: 26584147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical bonding in the N(2) molecule and the role of the quantum mechanical interference effect.
    Cardozo TM; Nascimento MA
    J Phys Chem A; 2009 Nov; 113(45):12541-8. PubMed ID: 19799455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference energy in C-H and C-C bonds of saturated hydrocarbons: dependence on the type of chain and relationship to bond dissociation energy.
    Vieira FS; Fantuzzi F; Cardozo TM; Nascimento MA
    J Phys Chem A; 2013 May; 117(19):4025-34. PubMed ID: 23574507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Perplexing Nature of the Bonding in C2 from Generalized Valence Bond Calculations.
    Xu LT; Dunning TH
    J Chem Theory Comput; 2014 Jan; 10(1):195-201. PubMed ID: 26579902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the metastability of doubly charged homonuclear diatomics.
    Fantuzzi F; Cardozo TM; Nascimento MAC
    Phys Chem Chem Phys; 2017 Jul; 19(29):19352-19359. PubMed ID: 28703821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Interference Contribution to the Dipole Moment of Diatomic Molecules.
    Oliveira de Sousa DW; Nascimento MAC
    J Phys Chem A; 2018 Feb; 122(5):1406-1412. PubMed ID: 29338264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-electron bonds are not "half-bonds".
    de Sousa DWO; Nascimento MAC
    Phys Chem Chem Phys; 2019 Jun; 21(24):13319-13336. PubMed ID: 31184654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities.
    Hickey AL; Rowley CN
    J Phys Chem A; 2014 May; 118(20):3678-87. PubMed ID: 24796376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent Effects on the Quantum Interference of Two-Center One-Electron Bonds: [B
    de Sousa DWO; Nascimento MAC
    J Phys Chem A; 2021 Jun; 125(21):4558-4564. PubMed ID: 34014679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and chemical bonding in the N(2)-CuX and N(2)...XCu (X = F, Cl, Br) systems studied by means of the molecular orbital and Quantum Chemical Topology methods.
    Kisowska K; Berski S; Latajka Z
    J Comput Chem; 2008 Dec; 29(16):2677-92. PubMed ID: 18484638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of the polar covalent bond.
    Zhao L; Pan S; Frenking G
    J Chem Phys; 2022 Jul; 157(3):034105. PubMed ID: 35868915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.
    Monari A; Rivail JL; Assfeld X
    Acc Chem Res; 2013 Feb; 46(2):596-603. PubMed ID: 23249409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical systematic study of a series of isocyanopolyynes.
    Vichietti RM; Haiduke RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():197-204. PubMed ID: 23770509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.