BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26580817)

  • 1. Single Site Discrimination of Cytosine, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Target DNA Using Anthracene-Tagged Fluorescent Probes.
    Duprey JL; Bullen GA; Zhao ZY; Bassani DM; Peacock AF; Wilkie J; Tucker JH
    ACS Chem Biol; 2016 Mar; 11(3):717-21. PubMed ID: 26580817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of DNA base variation and cytosine methylation at a single nucleotide site using a highly sensitive fluorescent probe.
    Duprey JL; Zhao ZY; Bassani DM; Manchester J; Vyle JS; Tucker JH
    Chem Commun (Camb); 2011 Jun; 47(23):6629-31. PubMed ID: 21562680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine in DNA by selective chemical labeling.
    Hu J; Chen Y; Xu X; Wu F; Xing X; Xu Z; Xu J; Weng X; Zhou X
    Bioorg Med Chem Lett; 2014 Jan; 24(1):294-7. PubMed ID: 24295785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules.
    Wanunu M; Cohen-Karni D; Johnson RR; Fields L; Benner J; Peterman N; Zheng Y; Klein ML; Drndic M
    J Am Chem Soc; 2011 Jan; 133(3):486-92. PubMed ID: 21155562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quenching by methylcytosine-metal complexation.
    Tanaka K; Tainaka K; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):139-40. PubMed ID: 17150856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals.
    Zhang HY; Xiong J; Qi BL; Feng YQ; Yuan BF
    Chem Commun (Camb); 2016 Jan; 52(4):737-40. PubMed ID: 26562407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA.
    Hardwick JS; Lane AN; Brown T
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29369386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification.
    Xu B; Devi G; Shao F
    Org Biomol Chem; 2015 May; 13(20):5646-51. PubMed ID: 25886653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of a single DNA base-pair mismatch using an anthracene-tagged fluorescent probe.
    Moran N; Bassani DM; Desvergne JP; Keiper S; Lowden PA; Vyle JS; Tucker JH
    Chem Commun (Camb); 2006 Dec; (48):5003-5. PubMed ID: 17146508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific discrimination of Cytosine and 5-methylcytosine in duplex DNA by Peptide nucleic acids.
    Okamoto A; Tanabe K; Saito I
    J Am Chem Soc; 2002 Sep; 124(35):10262-3. PubMed ID: 12197712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of epigenetic DNA modifications with a protein nanopore.
    Wallace EV; Stoddart D; Heron AJ; Mikhailova E; Maglia G; Donohoe TJ; Bayley H
    Chem Commun (Camb); 2010 Nov; 46(43):8195-7. PubMed ID: 20927439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation.
    Thalhammer A; Hansen AS; El-Sagheer AH; Brown T; Schofield CJ
    Chem Commun (Camb); 2011 May; 47(18):5325-7. PubMed ID: 21451870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioorthogonal labeling of 5-hydroxymethylcytosine in genomic DNA and diazirine-based DNA photo-cross-linking probes.
    Song CX; He C
    Acc Chem Res; 2011 Sep; 44(9):709-17. PubMed ID: 21539303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-selective 5-methylcytosine oxidation for epigenotyping.
    Okamoto A; Tainaka K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):45-6. PubMed ID: 17150625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive discrimination between cytosine and 5-methylcytosine in DNA by a modified invader method.
    Yamada H; Tanabe K; Nishimoto S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):163-4. PubMed ID: 17150868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of single nucleotide polymorphisms within a sequence of a gene associated with prostate cancer using a fluorophore-tagged DNA probe.
    Zhao ZY; San M; Duprey JL; Arrand JR; Vyle JS; Tucker JH
    Bioorg Med Chem Lett; 2012 Jan; 22(1):129-32. PubMed ID: 22169264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination between 5-Hydroxymethylcytosine and 5-Methylcytosine in DNA via Selective Electrogenerated Chemiluminescence (ECL) Labeling.
    Ma S; Sun H; Li Y; Qi H; Zheng J
    Anal Chem; 2016 Oct; 88(20):9934-9940. PubMed ID: 27620533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands.
    Schreiber J; Wescoe ZL; Abu-Shumays R; Vivian JT; Baatar B; Karplus K; Akeson M
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18910-5. PubMed ID: 24167260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-pairing energies of protonated nucleobase pairs and proton affinities of 1-methylated cytosines: model systems for the effects of the sugar moiety on the stability of DNA i-motif conformations.
    Yang B; Moehlig AR; Frieler CE; Rodgers MT
    J Phys Chem B; 2015 Feb; 119(5):1857-68. PubMed ID: 25565341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.