These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 26580830)
1. How To Light Special Hot Spots in Multiparticle-Film Configurations. Chen S; Meng LY; Shan HY; Li JF; Qian L; Williams CT; Yang ZL; Tian ZQ ACS Nano; 2016 Jan; 10(1):581-7. PubMed ID: 26580830 [TBL] [Abstract][Full Text] [Related]
2. Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy. Zhang YJ; Chen S; Radjenovic P; Bodappa N; Zhang H; Yang ZL; Tian ZQ; Li JF Anal Chem; 2019 Apr; 91(8):5316-5322. PubMed ID: 30912431 [TBL] [Abstract][Full Text] [Related]
3. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Wy Y; Jung H; Hong JW; Han SW Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153 [TBL] [Abstract][Full Text] [Related]
4. The moveable "hot spots" effect in an Au nanoparticles-Au plate coupled system. Sun Y; Zhang C; Yuan Y; Xu M; Yao J Nanoscale; 2020 Dec; 12(46):23789-23798. PubMed ID: 33237087 [TBL] [Abstract][Full Text] [Related]
5. Shedding Light on Surface-Enhanced Raman Scattering Hot Spots through Single-Molecule Super-Resolution Imaging. Willets KA; Stranahan SM; Weber ML J Phys Chem Lett; 2012 May; 3(10):1286-94. PubMed ID: 26286772 [TBL] [Abstract][Full Text] [Related]
6. Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. Shanthil M; Thomas R; Swathi RS; George Thomas K J Phys Chem Lett; 2012 Jun; 3(11):1459-64. PubMed ID: 26285622 [TBL] [Abstract][Full Text] [Related]
7. Super-resolution imaging of SERS hot spots. Willets KA Chem Soc Rev; 2014 Jun; 43(11):3854-64. PubMed ID: 24309836 [TBL] [Abstract][Full Text] [Related]
8. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q; Large N; Wang H ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940 [TBL] [Abstract][Full Text] [Related]
9. Generation of a periodic array of radially polarized Plasmonic focal spots. Bar-David J; Lerman GM; Stern L; Mazurski N; Levy U Opt Express; 2013 Feb; 21(3):3746-55. PubMed ID: 23481831 [TBL] [Abstract][Full Text] [Related]
10. Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy Using Single-Nanoparticle Spectroscopy. Hu S; Wang J; Zhang YJ; Wen BY; Wu SS; Radjenovic PM; Yang Z; Ren B; Li JF ACS Nano; 2022 Dec; 16(12):21388-21396. PubMed ID: 36468912 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles. Pavaskar P; Theiss J; Cronin SB Opt Express; 2012 Jun; 20(13):14656-62. PubMed ID: 22714527 [TBL] [Abstract][Full Text] [Related]
12. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots. Borys NJ; Shafran E; Lupton JM Sci Rep; 2013; 3():2090. PubMed ID: 23807624 [TBL] [Abstract][Full Text] [Related]
13. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Liu Y; Pedireddy S; Lee YH; Hegde RS; Tjiu WW; Cui Y; Ling XY Small; 2014 Dec; 10(23):4940-50. PubMed ID: 25048617 [TBL] [Abstract][Full Text] [Related]
14. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies. Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180 [TBL] [Abstract][Full Text] [Related]
15. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields. Haran G Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801 [TBL] [Abstract][Full Text] [Related]
16. Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Chen S; Zhang Y; Shih TM; Yang W; Hu S; Hu X; Li J; Ren B; Mao B; Yang Z; Tian Z Nano Lett; 2018 Apr; 18(4):2209-2216. PubMed ID: 29504760 [TBL] [Abstract][Full Text] [Related]
17. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. Pasquale AJ; Reinhard BM; Dal Negro L ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951 [TBL] [Abstract][Full Text] [Related]
18. Super-resolution imaging of interactions between molecules and plasmonic nanostructures. Willets KA Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954 [TBL] [Abstract][Full Text] [Related]
19. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal. Saha A; Palmal S; Jana NR Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658 [TBL] [Abstract][Full Text] [Related]
20. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies. Zhang YJ; Radjenovic PM; Zhou XS; Zhang H; Yao JL; Li JF Adv Mater; 2021 Dec; 33(50):e2005900. PubMed ID: 33811422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]