These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26580902)

  • 1. Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES). Part 1: ReaxFF models for cyclotrimethylene trinitramine (RDX) and 1,1-diamino-2,2-dinitroethene (FOX-7).
    Larentzos JP; Rice BM; Byrd EF; Weingarten NS; Lill JV
    J Chem Theory Comput; 2015 Feb; 11(2):381-91. PubMed ID: 26580902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES): Part 2: transferability of ReaxFF models to C-H-N-O energetic materials.
    Rice BM; Larentzos JP; Byrd EF; Weingarten NS
    J Chem Theory Comput; 2015 Feb; 11(2):392-405. PubMed ID: 26580903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterization of reactive force field: dynamics of the [Nb6O19H(x)]((8-x)-) Lindqvist polyoxoanion in bulk water.
    Kaledin AL; van Duin AC; Hill CL; Musaev DG
    J Phys Chem A; 2013 Aug; 117(32):6967-74. PubMed ID: 23394309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New roles for 1,1-diamino-2,2-dinitroethene (FOX-7): halogenated FOX-7 and azo-bis(diahaloFOX) as energetic materials and oxidizers.
    Vo TT; Zhang J; Parrish DA; Twamley B; Shreeve JM
    J Am Chem Soc; 2013 Aug; 135(32):11787-90. PubMed ID: 23909984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory.
    Podeszwa R; Bukowski R; Rice BM; Szalewicz K
    Phys Chem Chem Phys; 2007 Nov; 9(41):5561-9. PubMed ID: 17957312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferable Reactive Force Fields: Extensions of ReaxFF-lg to Nitromethane.
    Larentzos JP; Rice BM
    J Phys Chem A; 2017 Mar; 121(9):2001-2013. PubMed ID: 28177629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles.
    Podeszwa R; Rice BM; Szalewicz K
    Phys Chem Chem Phys; 2009 Jul; 11(26):5512-8. PubMed ID: 19551222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.
    Trnka T; Tvaroška I; Koča J
    J Chem Theory Comput; 2018 Jan; 14(1):291-302. PubMed ID: 29156140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study.
    Islam MM; Zou C; van Duin AC; Raman S
    Phys Chem Chem Phys; 2016 Jan; 18(2):761-71. PubMed ID: 26626108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials.
    Liu L; Liu Y; Zybin SV; Sun H; Goddard WA
    J Phys Chem A; 2011 Oct; 115(40):11016-22. PubMed ID: 21888351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of crystal morphology of cyclotrimethylene trinitramine in the solvent medium by computer simulation: a case of cyclohexanone solvent.
    Chen G; Xia M; Lei W; Wang F; Gong X
    J Phys Chem A; 2014 Dec; 118(49):11471-8. PubMed ID: 25401274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the anisotropic response of condensed-phase RDX under repeated stress wave loading via ReaxFF molecular dynamics simulation.
    Wang N; Peng J; Pang A; Hu J; He T
    J Mol Model; 2016 Sep; 22(9):229. PubMed ID: 27568527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
    Furman D; Carmeli B; Zeiri Y; Kosloff R
    J Chem Theory Comput; 2018 Jun; 14(6):3100-3112. PubMed ID: 29727570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures.
    Zhang B; van Duin AC; Johnson JK
    J Phys Chem B; 2014 Oct; 118(41):12008-16. PubMed ID: 25285669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine.
    Dreger ZA; McCluskey MD; Gupta YM
    J Phys Chem A; 2012 Oct; 116(39):9680-8. PubMed ID: 22971173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a ReaxFF reactive force field for titanium dioxide/water systems.
    Kim SY; Kumar N; Persson P; Sofo J; van Duin AC; Kubicki JD
    Langmuir; 2013 Jun; 29(25):7838-46. PubMed ID: 23687907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory calculations of pressure effects on the structure and vibrations of 1,1-diamino-2,2-dinitroethene (FOX-7).
    Averkiev BB; Dreger ZA; Chaudhuri S
    J Phys Chem A; 2014 Oct; 118(43):10002-10. PubMed ID: 25289985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics study of the structures and properties of RDX/GAP propellant.
    Li M; Li F; Shen R; Guo X
    J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameterization of a reactive force field using a Monte Carlo algorithm.
    Iype E; Hütter M; Jansen AP; Nedea SV; Rindt CC
    J Comput Chem; 2013 May; 34(13):1143-54. PubMed ID: 23420666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.