These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 26581098)
1. Replaying Evolution to Test the Cause of Extinction of One Ecotype in an Experimentally Evolved Population. Turner CB; Blount ZD; Lenski RE PLoS One; 2015; 10(11):e0142050. PubMed ID: 26581098 [TBL] [Abstract][Full Text] [Related]
2. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Blount ZD; Borland CZ; Lenski RE Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7899-906. PubMed ID: 18524956 [TBL] [Abstract][Full Text] [Related]
3. Evolution of a cross-feeding interaction following a key innovation in a long-term evolution experiment with Turner CB; Blount ZD; Mitchell DH; Lenski RE Microbiology (Reading); 2023 Aug; 169(8):. PubMed ID: 37650867 [TBL] [Abstract][Full Text] [Related]
4. Genomic and phenotypic evolution of Blount ZD; Maddamsetti R; Grant NA; Ahmed ST; Jagdish T; Baxter JA; Sommerfeld BA; Tillman A; Moore J; Slonczewski JL; Barrick JE; Lenski RE Elife; 2020 May; 9():. PubMed ID: 32469311 [TBL] [Abstract][Full Text] [Related]
5. A case study in evolutionary contingency. Blount ZD Stud Hist Philos Biol Biomed Sci; 2016 Aug; 58():82-92. PubMed ID: 26787098 [TBL] [Abstract][Full Text] [Related]
6. Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. Quandt EM; Gollihar J; Blount ZD; Ellington AD; Georgiou G; Barrick JE Elife; 2015 Oct; 4():. PubMed ID: 26465114 [TBL] [Abstract][Full Text] [Related]
7. Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides. Leon D; D'Alton S; Quandt EM; Barrick JE PLoS Genet; 2018 Apr; 14(4):e1007348. PubMed ID: 29649242 [TBL] [Abstract][Full Text] [Related]
8. Rediversification following ecotype isolation reveals hidden adaptive potential. Ascensao JA; Denk J; Lok K; Yu Q; Wetmore KM; Hallatschek O Curr Biol; 2024 Feb; 34(4):855-867.e6. PubMed ID: 38325377 [TBL] [Abstract][Full Text] [Related]
9. Changes in Cell Size and Shape during 50,000 Generations of Experimental Evolution with Escherichia coli. Grant NA; Abdel Magid A; Franklin J; Dufour Y; Lenski RE J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649147 [TBL] [Abstract][Full Text] [Related]
10. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Quandt EM; Deatherage DE; Ellington AD; Georgiou G; Barrick JE Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2217-22. PubMed ID: 24379390 [TBL] [Abstract][Full Text] [Related]
11. Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA. Van Hofwegen DJ; Hovde CJ; Minnich SA J Bacteriol; 2016 Feb; 198(7):1022-34. PubMed ID: 26833416 [TBL] [Abstract][Full Text] [Related]
12. Complex Ecotype Dynamics Evolve in Response to Fluctuating Resources. Behringer MG; Ho WC; Meraz JC; Miller SF; Boyer GF; Stone CJ; Andersen M; Lynch M mBio; 2022 Jun; 13(3):e0346721. PubMed ID: 35575545 [TBL] [Abstract][Full Text] [Related]
13. Genomic analysis of a key innovation in an experimental Escherichia coli population. Blount ZD; Barrick JE; Davidson CJ; Lenski RE Nature; 2012 Sep; 489(7417):513-8. PubMed ID: 22992527 [TBL] [Abstract][Full Text] [Related]
14. Adaptation, Clonal Interference, and Frequency-Dependent Interactions in a Long-Term Evolution Experiment with Escherichia coli. Maddamsetti R; Lenski RE; Barrick JE Genetics; 2015 Jun; 200(2):619-31. PubMed ID: 25911659 [TBL] [Abstract][Full Text] [Related]
15. Coexisting ecotypes in long-term evolution emerged from interacting trade-offs. Mukherjee A; Ealy J; Huang Y; Benites NC; Polk M; Basan M Nat Commun; 2023 Jun; 14(1):3805. PubMed ID: 37365188 [TBL] [Abstract][Full Text] [Related]
16. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification. Rocabert C; Knibbe C; Consuegra J; Schneider D; Beslon G PLoS Comput Biol; 2017 Mar; 13(3):e1005459. PubMed ID: 28358919 [TBL] [Abstract][Full Text] [Related]
17. Rediversification Following Ecotype Isolation Reveals Hidden Adaptive Potential. Ascensao JA; Denk J; Lok K; Yu Q; Wetmore KM; Hallatschek O bioRxiv; 2023 May; ():. PubMed ID: 37205326 [TBL] [Abstract][Full Text] [Related]
18. Extinction dynamics from metastable coexistences in an evolutionary game. Park HJ; Traulsen A Phys Rev E; 2017 Oct; 96(4-1):042412. PubMed ID: 29347472 [TBL] [Abstract][Full Text] [Related]
19. Mismatch in the distribution of floral ecotypes and pollinators: insights into the evolution of sexually deceptive orchids. Phillips RD; Bohman B; Anthony JM; Krauss SL; Dixon KW; Peakall R J Evol Biol; 2015 Mar; 28(3):601-12. PubMed ID: 25619237 [TBL] [Abstract][Full Text] [Related]
20. Fitness and Productivity Increase with Ecotypic Diversity among Yang DD; Alexander A; Kinnersley M; Cook E; Caudy A; Rosebrock A; Rosenzweig F Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]