These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26581871)

  • 1. A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.
    Tóth TI; Daun-Gruhn S
    J Neurophysiol; 2016 Feb; 115(2):887-906. PubMed ID: 26581871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs.
    Tóth TI; Daun S
    Physiol Rep; 2017 Feb; 5(4):. PubMed ID: 28242829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependent changes in strength and efficacy of leg coordination mechanisms.
    Dürr V
    J Exp Biol; 2005 Jun; 208(Pt 12):2253-67. PubMed ID: 15939768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static stability predicts the continuum of interleg coordination patterns in
    Szczecinski NS; Bockemühl T; Chockley AS; Büschges A
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30274987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
    Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A
    J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominance of local sensory signals over inter-segmental effects in a motor system: modeling studies.
    Daun-Gruhn S; Tóth TI; Borgmann A
    Biol Cybern; 2011 Dec; 105(5-6):413-26. PubMed ID: 22290139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
    Borgmann A; Toth TI; Gruhn M; Daun-Gruhn S; Büschges A
    Biol Cybern; 2011 Dec; 105(5-6):399-411. PubMed ID: 22290138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segment-specific and state-dependent targeting accuracy of the stick insect.
    Wosnitza A; Engelen J; Gruhn M
    J Exp Biol; 2013 Nov; 216(Pt 22):4172-83. PubMed ID: 23948479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling search movements of an insect's front leg.
    Tóth TI; Berg E; Daun S
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29146863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinematic model of stick-insect walking.
    Tóth TI; Daun S
    Physiol Rep; 2019 Apr; 7(8):e14080. PubMed ID: 31033245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.
    Grabowska M; Toth TI; Smarandache-Wellmann C; Daun-Gruhn S
    J Comput Neurosci; 2015 Jun; 38(3):601-16. PubMed ID: 25904469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves.
    Tóth TI; Grabowska M; Rosjat N; Hellekes K; Borgmann A; Daun-Gruhn S
    Biol Cybern; 2015 Jun; 109(3):349-62. PubMed ID: 25712905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor pathways involved in interjoint reflex action of an insect leg.
    Hess D; Büschges A
    J Neurobiol; 1997 Dec; 33(7):891-913. PubMed ID: 9407012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.
    Borgmann A; Hooper SL; Büschges A
    J Neurosci; 2009 Mar; 29(9):2972-83. PubMed ID: 19261892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
    Fischer H; Schmidt J; Haas R; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.