These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26582569)
1. Noninvasive dissection of mouse sleep using a piezoelectric motion sensor. Yaghouby F; Donohue KD; O'Hara BF; Sunderam S J Neurosci Methods; 2016 Feb; 259():90-100. PubMed ID: 26582569 [TBL] [Abstract][Full Text] [Related]
2. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements. Yaghouby F; O'Hara BF; Sunderam S Int J Neural Syst; 2016 Jun; 26(4):1650017. PubMed ID: 27121993 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive three-state sleep-wake staging in mice using electric field sensors. Kloefkorn H; Aiani LM; Lakhani A; Nagesh S; Moss A; Goolsby W; Rehg JM; Pedersen NP; Hochman S J Neurosci Methods; 2020 Oct; 344():108834. PubMed ID: 32619585 [TBL] [Abstract][Full Text] [Related]
4. Design and validation of a computer-based sleep-scoring algorithm. Louis RP; Lee J; Stephenson R J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347 [TBL] [Abstract][Full Text] [Related]
5. Circadian rhythms and sleep have additive effects on respiration in the rat. Stephenson R; Liao KS; Hamrahi H; Horner RL J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171 [TBL] [Abstract][Full Text] [Related]
6. High-throughput visual assessment of sleep stages in mice using machine learning. Geuther B; Chen M; Galante RJ; Han O; Lian J; George J; Pack AI; Kumar V Sleep; 2022 Feb; 45(2):. PubMed ID: 34718812 [TBL] [Abstract][Full Text] [Related]
7. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. Stephenson R; Caron AM; Famina S Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a piezoelectric system as an alternative to electroencephalogram/ electromyogram recordings in mouse sleep studies. Mang GM; Nicod J; Emmenegger Y; Donohue KD; O'Hara BF; Franken P Sleep; 2014 Aug; 37(8):1383-92. PubMed ID: 25083019 [TBL] [Abstract][Full Text] [Related]
9. Assessing REM sleep in mice using video data. McShane BB; Galante RJ; Biber M; Jensen ST; Wyner AJ; Pack AI Sleep; 2012 Mar; 35(3):433-42. PubMed ID: 22379250 [TBL] [Abstract][Full Text] [Related]
10. The Visual Scoring of Sleep in Infants 0 to 2 Months of Age. Grigg-Damberger MM J Clin Sleep Med; 2016 Mar; 12(3):429-45. PubMed ID: 26951412 [TBL] [Abstract][Full Text] [Related]
11. Periodic limb movements both in non-REM and REM sleep: relationships between cerebral and autonomic activities. Allena M; Campus C; Morrone E; De Carli F; Garbarino S; Manfredi C; Sebastiano DR; Ferrillo F Clin Neurophysiol; 2009 Jul; 120(7):1282-90. PubMed ID: 19505849 [TBL] [Abstract][Full Text] [Related]
12. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice. Ahnaou A; Raeymaekers L; Steckler T; Drinkenbrug WH Behav Brain Res; 2015 Apr; 282():218-26. PubMed ID: 25591476 [TBL] [Abstract][Full Text] [Related]
13. Scoring transitions to REM sleep in rats based on the EEG phenomena of pre-REM sleep: an improved analysis of sleep structure. Benington JH; Kodali SK; Heller HC Sleep; 1994 Feb; 17(1):28-36. PubMed ID: 8191200 [TBL] [Abstract][Full Text] [Related]
14. Respiratory and body movements as indicators of sleep stage and wakefulness in infants and young children. Kirjavainen T; Cooper D; Polo O; Sullivan CE J Sleep Res; 1996 Sep; 5(3):186-94. PubMed ID: 8956209 [TBL] [Abstract][Full Text] [Related]
15. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure. Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548 [TBL] [Abstract][Full Text] [Related]
16. Automated sleep classification with chronic neural implants in freely behaving canines. Mivalt F; Sladky V; Worrell S; Gregg NM; Balzekas I; Kim I; Chang SY; Montonye DR; Duque-Lopez A; Krakorova M; Pridalova T; Lepkova K; Brinkmann BH; Miller KJ; Van Gompel JJ; Denison T; Kaufmann TJ; Messina SA; St Louis EK; Kremen V; Worrell GA J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37536320 [No Abstract] [Full Text] [Related]
17. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat. Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142 [TBL] [Abstract][Full Text] [Related]
19. Supervised and unsupervised machine learning for automated scoring of sleep-wake and cataplexy in a mouse model of narcolepsy. Exarchos I; Rogers AA; Aiani LM; Gross RE; Clifford GD; Pedersen NP; Willie JT Sleep; 2020 May; 43(5):. PubMed ID: 31693157 [TBL] [Abstract][Full Text] [Related]
20. An automated sleep staging tool based on simple statistical features of mice electroencephalography (EEG) and electromyography (EMG) data. Yamada RG; Matsuzawa K; Ode KL; Ueda HR Eur J Neurosci; 2024 Oct; 60(7):5467-5486. PubMed ID: 39072800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]