These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 26582898)
1. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Miller MA; Gadde S; Pfirschke C; Engblom C; Sprachman MM; Kohler RH; Yang KS; Laughney AM; Wojtkiewicz G; Kamaly N; Bhonagiri S; Pittet MJ; Farokhzad OC; Weissleder R Sci Transl Med; 2015 Nov; 7(314):314ra183. PubMed ID: 26582898 [TBL] [Abstract][Full Text] [Related]
2. Development and evaluation of a novel TPGS-mediated paclitaxel-loaded PLGA-mPEG nanoparticle for the treatment of ovarian cancer. Lv W; Cheng L; Li B Chem Pharm Bull (Tokyo); 2015; 63(2):68-74. PubMed ID: 25451039 [TBL] [Abstract][Full Text] [Related]
3. A targeting drug delivery system for ovarian carcinoma: transferrin modified lipid coated paclitaxel-loaded nanoparticles. Li R; Zhang Q; Wang XY; Chen XG; He YX; Yang WY; Yang X Drug Res (Stuttg); 2014 Oct; 64(10):541-7. PubMed ID: 24443309 [TBL] [Abstract][Full Text] [Related]
4. In vitro &in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction. Xiong XY; Guo L; Gong YC; Li ZL; Li YP; Liu ZY; Zhou M Eur J Pharm Sci; 2012 Aug; 46(5):537-44. PubMed ID: 22538053 [TBL] [Abstract][Full Text] [Related]
6. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Zhan C; Gu B; Xie C; Li J; Liu Y; Lu W J Control Release; 2010 Apr; 143(1):136-42. PubMed ID: 20056123 [TBL] [Abstract][Full Text] [Related]
7. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. Schleich N; Po C; Jacobs D; Ucakar B; Gallez B; Danhier F; Préat V J Control Release; 2014 Nov; 194():82-91. PubMed ID: 25178270 [TBL] [Abstract][Full Text] [Related]
8. Polyethylene glycol-polylactic acid nanoparticles modified with cysteine-arginine-glutamic acid-lysine-alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. Wu J; Zhao J; Zhang B; Qian Y; Gao H; Yu Y; Wei Y; Yang Z; Jiang X; Pang Z Int J Nanomedicine; 2014; 9():5261-71. PubMed ID: 25419130 [TBL] [Abstract][Full Text] [Related]
9. Targeted paclitaxel nanoparticles modified with follicle-stimulating hormone β 81-95 peptide show effective antitumor activity against ovarian carcinoma. Zhang X; Chen J; Kang Y; Hong S; Zheng Y; Sun H; Xu C Int J Pharm; 2013 Sep; 453(2):498-505. PubMed ID: 23811008 [TBL] [Abstract][Full Text] [Related]
10. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Farokhzad OC; Cheng J; Teply BA; Sherifi I; Jon S; Kantoff PW; Richie JP; Langer R Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6315-20. PubMed ID: 16606824 [TBL] [Abstract][Full Text] [Related]
11. Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Wang L; Yao J; Zhang X; Zhang Y; Xu C; Lee RJ; Yu G; Yu B; Teng L Colloids Surf B Biointerfaces; 2018 Jan; 161():464-470. PubMed ID: 29128832 [TBL] [Abstract][Full Text] [Related]
12. Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer. Araki T; Kono Y; Ogawara K; Watanabe T; Ono T; Kimura T; Higaki K Biol Pharm Bull; 2012; 35(8):1306-13. PubMed ID: 22863930 [TBL] [Abstract][Full Text] [Related]
14. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
15. Folic acid-coupled nano-paclitaxel liposome reverses drug resistance in SKOV3/TAX ovarian cancer cells. Tong L; Chen W; Wu J; Li H Anticancer Drugs; 2014 Mar; 25(3):244-54. PubMed ID: 24275314 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice. Kato Y; Zhu W; Backer MV; Neoh CC; Hapuarachchige S; Sarkar SK; Backer JM; Artemov D Pharm Res; 2015 Nov; 32(11):3746-3755. PubMed ID: 26078000 [TBL] [Abstract][Full Text] [Related]
17. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Cole AJ; David AE; Wang J; Galbán CJ; Hill HL; Yang VC Biomaterials; 2011 Mar; 32(8):2183-93. PubMed ID: 21176955 [TBL] [Abstract][Full Text] [Related]
18. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors. Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102 [TBL] [Abstract][Full Text] [Related]
19. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Fu YC; Fu TF; Wang HJ; Lin CW; Lee GH; Wu SC; Wang CK Acta Biomater; 2014 Nov; 10(11):4583-4596. PubMed ID: 25050775 [TBL] [Abstract][Full Text] [Related]
20. PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Jiang X; Xin H; Sha X; Gu J; Jiang Y; Law K; Chen Y; Chen L; Wang X; Fang X Int J Pharm; 2011 Nov; 420(2):385-94. PubMed ID: 21920419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]