BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26582922)

  • 1. SureChEMBL: a large-scale, chemically annotated patent document database.
    Papadatos G; Davies M; Dedman N; Chambers J; Gaulton A; Siddle J; Koks R; Irvine SA; Pettersson J; Goncharoff N; Hersey A; Overington JP
    Nucleic Acids Res; 2016 Jan; 44(D1):D1220-8. PubMed ID: 26582922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring SureChEMBL from a drug discovery perspective.
    Gadiya Y; Shetty S; Hofmann-Apitius M; Gribbon P; Zaliani A
    Sci Data; 2024 May; 11(1):507. PubMed ID: 38755219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Managing expectations: assessment of chemistry databases generated by automated extraction of chemical structures from patents.
    Senger S; Bartek L; Papadatos G; Gaulton A
    J Cheminform; 2015 Dec; 7(1):49. PubMed ID: 26457120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annotated chemical patent corpus: a gold standard for text mining.
    Akhondi SA; Klenner AG; Tyrchan C; Manchala AK; Boppana K; Lowe D; Zimmermann M; Jagarlapudi SA; Sayle R; Kors JA; Muresan S
    PLoS One; 2014; 9(9):e107477. PubMed ID: 25268232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the Core Chemical Structure in SureChEMBL Patents.
    Falaguera MJ; Mestres J
    J Chem Inf Model; 2021 May; 61(5):2241-2247. PubMed ID: 33929850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks.
    Kunimoto R; Bajorath J
    J Comput Aided Mol Des; 2017 Sep; 31(9):779-788. PubMed ID: 28871390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic identification of relevant chemical compounds from patents.
    Akhondi SA; Rey H; Schwörer M; Maier M; Toomey J; Nau H; Ilchmann G; Sheehan M; Irmer M; Bobach C; Doornenbal M; Gregory M; Kors JA
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30698776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the significance of patent-derived information for the early identification of compound-target interaction hypotheses.
    Senger S
    J Cheminform; 2017 Apr; 9(1):26. PubMed ID: 29086108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illuminating the druggable genome through patent bioactivity data.
    Magariños MP; Gaulton A; Félix E; Kiziloren T; Arcila R; Oprea TI; Leach AR
    PeerJ; 2023; 11():e15153. PubMed ID: 37151295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building structure-activity insights through patent mining.
    Tu M; Pfefferkorn JA; Guzman-Perez A; Filipski KJ
    Pharm Pat Anal; 2012 Nov; 1(5):545-54. PubMed ID: 24236924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CIPSI: An open chemical intellectual property service for medicinal chemists.
    Martinez-Sevillano M; Falaguera MJ; Mestres J
    Mol Inform; 2024 Jan; 43(1):e202300221. PubMed ID: 38010631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advanced search engine for patent analytics in medicinal chemistry.
    Pasche E; Gobeill J; Teodoro D; Gaudinat A; Vishnykova D; Lovis C; Ruch P
    Stud Health Technol Inform; 2012; 180():204-9. PubMed ID: 22874181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontology-based content analysis of US patent applications from 2001-2010.
    Weber L; Böhme T; Irmer M
    Pharm Pat Anal; 2013 Jan; 2(1):39-54. PubMed ID: 24236969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery.
    van Santen JA; Jacob G; Singh AL; Aniebok V; Balunas MJ; Bunsko D; Neto FC; Castaño-Espriu L; Chang C; Clark TN; Cleary Little JL; Delgadillo DA; Dorrestein PC; Duncan KR; Egan JM; Galey MM; Haeckl FPJ; Hua A; Hughes AH; Iskakova D; Khadilkar A; Lee JH; Lee S; LeGrow N; Liu DY; Macho JM; McCaughey CS; Medema MH; Neupane RP; O'Donnell TJ; Paula JS; Sanchez LM; Shaikh AF; Soldatou S; Terlouw BR; Tran TA; Valentine M; van der Hooft JJJ; Vo DA; Wang M; Wilson D; Zink KE; Linington RG
    ACS Cent Sci; 2019 Nov; 5(11):1824-1833. PubMed ID: 31807684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opening up connectivity between documents, structures and bioactivity.
    Southan C
    Beilstein J Org Chem; 2020; 16():596-606. PubMed ID: 32280387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding opportunities for mining bioactive chemistry from patents.
    Southan C
    Drug Discov Today Technol; 2015 Jul; 14():3-9. PubMed ID: 26194581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting and connecting chemical structures from text sources using chemicalize.org.
    Southan C; Stracz A
    J Cheminform; 2013 Apr; 5(1):20. PubMed ID: 23618056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChEMBL: a large-scale bioactivity database for drug discovery.
    Gaulton A; Bellis LJ; Bento AP; Chambers J; Davies M; Hersey A; Light Y; McGlinchey S; Michalovich D; Al-Lazikani B; Overington JP
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1100-7. PubMed ID: 21948594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AI-driven molecular generation of not-patented pharmaceutical compounds using world open patent data.
    Shimizu Y; Ohta M; Ishida S; Terayama K; Osawa M; Honma T; Ikeda K
    J Cheminform; 2023 Dec; 15(1):120. PubMed ID: 38093324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.