These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26583234)

  • 21. Surface properties of the polarizable Baranyai-Kiss water model.
    Kiss P; Darvas M; Baranyai A; Jedlovszky P
    J Chem Phys; 2012 Mar; 136(11):114706. PubMed ID: 22443789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium.
    Kiss PT; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194103. PubMed ID: 23181290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.
    Minezawa N; Kato S
    J Chem Phys; 2007 Feb; 126(5):054511. PubMed ID: 17302489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)].
    Laino T; Hutter J
    J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarizable six-point water models from computational and empirical optimization.
    Tröster P; Lorenzen K; Tavan P
    J Phys Chem B; 2014 Feb; 118(6):1589-602. PubMed ID: 24437570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II.
    Yan T; Wang Y; Knox C
    J Phys Chem B; 2010 May; 114(20):6886-904. PubMed ID: 20443608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous distributions of charges: extensions of the one component plasma.
    Heyes DM; Rickayzen G
    J Chem Phys; 2014 Jan; 140(2):024506. PubMed ID: 24437895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
    Nam K; Gao J; York DM
    J Chem Theory Comput; 2005 Jan; 1(1):2-13. PubMed ID: 26641110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new polarizable force field for alkali and halide ions.
    Kiss PT; Baranyai A
    J Chem Phys; 2014 Sep; 141(11):114501. PubMed ID: 25240358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An extension of Wolf's method for the treatment of electrostatic interactions: application to liquid water and aqueous solutions.
    Fanourgakis GS
    J Phys Chem B; 2015 Feb; 119(5):1974-85. PubMed ID: 25611255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Behavior of polarizable models in presence of strong electric fields. I. Origin of nonlinear effects in water point-charge systems.
    Chelli R; Barducci A; Bellucci L; Schettino V; Procacci P
    J Chem Phys; 2005 Nov; 123(19):194109. PubMed ID: 16321078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model.
    Paricaud P; Predota M; Chialvo AA; Cummings PT
    J Chem Phys; 2005 Jun; 122(24):244511. PubMed ID: 16035786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vapor-liquid equilibrium and polarization behavior of the GCP water model: Gaussian charge-on-spring versus dipole self-consistent field approaches to induced polarization.
    Chialvo AA; Moucka F; Vlcek L; Nezbeda I
    J Phys Chem B; 2015 Apr; 119(15):5010-9. PubMed ID: 25803267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an effective polarizable bond method for biomolecular simulation.
    Xiao X; Zhu T; Ji CG; Zhang JZ
    J Phys Chem B; 2013 Dec; 117(48):14885-93. PubMed ID: 24251550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Charge Moving Algorithm for Molecular Dynamics Simulations of Gas-Phase Proteins.
    Fegan SK; Thachuk M
    J Chem Theory Comput; 2013 Jun; 9(6):2531-9. PubMed ID: 26583850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards a dissociative SPC-like water model - probing the impact of intramolecular Coulombic contributions.
    Wiedemair MJ; Hofer TS
    Phys Chem Chem Phys; 2017 Dec; 19(47):31910-31920. PubMed ID: 29177300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice summations for spread out particles: applications to neutral and charged systems.
    Heyes DM; Brańka AC
    J Chem Phys; 2013 Jan; 138(3):034504. PubMed ID: 23343282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.