These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26583251)

  • 1. Accelerating All-Atom MD Simulations of Lipids Using a Modified Virtual-Sites Technique.
    Loubet B; Kopec W; Khandelia H
    J Chem Theory Comput; 2014 Dec; 10(12):5690-5. PubMed ID: 26583251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field.
    Olesen K; Awasthi N; Bruhn DS; Pezeshkian W; Khandelia H
    J Chem Theory Comput; 2018 Jun; 14(6):3342-3350. PubMed ID: 29750867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol.
    Kulig W; Pasenkiewicz-Gierula M; Róg T
    Data Brief; 2015 Dec; 5():333-6. PubMed ID: 26568975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the Properties of Cardiolipin Containing Bilayers from Molecular Dynamics Simulations, Using a Hybrid All-Atom/United-Atom Force Field.
    Aguayo D; González-Nilo FD; Chipot C
    J Chem Theory Comput; 2012 May; 8(5):1765-73. PubMed ID: 26593668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM36 united atom chain model for lipids and surfactants.
    Lee S; Tran A; Allsopp M; Lim JB; Hénin J; Klauda JB
    J Phys Chem B; 2014 Jan; 118(2):547-56. PubMed ID: 24341749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations.
    Buslaev P; Gordeliy V; Grudinin S; Gushchin I
    J Chem Theory Comput; 2016 Mar; 12(3):1019-28. PubMed ID: 26765212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of phospholipid bilayers.
    Huang P; Perez JJ; Loew GH
    J Biomol Struct Dyn; 1994 Apr; 11(5):927-56. PubMed ID: 7946065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of the CHARMM27 force field with united-atom lipid force fields.
    Sapay N; Tieleman DP
    J Comput Chem; 2011 May; 32(7):1400-10. PubMed ID: 21425293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the CHARMM force field for polyunsaturated fatty acid chains.
    Klauda JB; Monje V; Kim T; Im W
    J Phys Chem B; 2012 Aug; 116(31):9424-31. PubMed ID: 22697583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models.
    Bjelkmar P; Larsson P; Cuendet MA; Hess B; Lindahl E
    J Chem Theory Comput; 2010 Feb; 6(2):459-66. PubMed ID: 26617301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins.
    Kukol A
    J Chem Theory Comput; 2009 Mar; 5(3):615-26. PubMed ID: 26610227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid-protein interactions, side chain transfer free energies and model proteins.
    Tieleman DP; Maccallum JL; Ash WL; Kandt C; Xu Z; Monticelli L
    J Phys Condens Matter; 2006 Jul; 18(28):S1221-34. PubMed ID: 21690838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating POPC and POPC/POPG Bilayers: Conserved Packing and Altered Surface Reactivity.
    Janosi L; Gorfe AA
    J Chem Theory Comput; 2010 Oct; 6(10):3267-73. PubMed ID: 26616788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations.
    Rosetti C; Pastorino C
    J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics studies of the molecular structure and interactions of cholesterol superlattices and random domains in an unsaturated phosphatidylcholine bilayer membrane.
    Zhu Q; Cheng KH; Vaughn MW
    J Phys Chem B; 2007 Sep; 111(37):11021-31. PubMed ID: 17718554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study.
    Karami L; Jalili S
    J Biomol Struct Dyn; 2015; 33(6):1254-68. PubMed ID: 25068451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.
    Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J
    Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.