These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26583286)

  • 1. Toxicity assessment and geochemical model of chromium leaching from AOD slag.
    Liu B; Li J; Zeng Y; Wang Z
    Chemosphere; 2016 Feb; 144():2052-7. PubMed ID: 26583286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralogical determination and geo-chemical modeling of chromium release from AOD slag: Distribution and leachability aspects.
    Li J; Liu B; Zeng Y; Wang Z
    Chemosphere; 2017 Jan; 167():360-366. PubMed ID: 27743532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum availability and mineralogical control of chromium released from AOD slag.
    Li J; Liu B; Zeng Y; Wang Z; Gao Z
    Environ Monit Assess; 2017 Mar; 189(3):113. PubMed ID: 28210896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term leaching characterization and geochemical modeling of chromium released from AOD slag.
    Liu B; Li J; Wang Z; Zeng Y; Ren Q
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):921-929. PubMed ID: 31814076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental impacts of asphalt mixes with electric arc furnace steel slag.
    Milačič R; Zuliani T; Oblak T; Mladenovič A; Ančar JŠ
    J Environ Qual; 2011; 40(4):1153-61. PubMed ID: 21712585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thin-film accelerated carbonation on steel slag leaching.
    Baciocchi R; Costa G; Polettini A; Pomi R
    J Hazard Mater; 2015 Apr; 286():369-78. PubMed ID: 25596552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach.
    Chaurand P; Rose J; Briois V; Olivi L; Hazemann JL; Proux O; Domas J; Bottero JY
    J Hazard Mater; 2007 Jan; 139(3):537-42. PubMed ID: 16707215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments.
    Gomes HI; Funari V; Mayes WM; Rogerson M; Prior TJ
    J Environ Manage; 2018 Sep; 222():30-36. PubMed ID: 29800862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.
    Jin Z; Liu T; Yang Y; Jackson D
    Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge for the preferential removal of iron.
    Majuste D; Mansur MB
    J Hazard Mater; 2009 Feb; 162(1):356-64. PubMed ID: 18579293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.
    van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN
    Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of steel slag leaching: Batch tests and modeling.
    De Windt L; Chaurand P; Rose J
    Waste Manag; 2011 Feb; 31(2):225-35. PubMed ID: 20646922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.
    Liu T; Li F; Jin Z; Yang Y
    Environ Pollut; 2018 Jul; 238():359-368. PubMed ID: 29574360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry-leaching of heavy metals from steel-making slag.
    Nguyen LH; Nguyen TD; Tran TVN; Nguyen DL; Tran HS; Nguyen TL; Nguyen TH; Nguyen HG; Nguyen TP; Nguyen NT; Isawa T; Ta Y; Sato R
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):41983-41991. PubMed ID: 34564812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ageing of chromium(III)-bearing slag and its relation to the atmospheric oxidation of solid chromium(III)-oxide in the presence of calcium oxide.
    Pillay K; von Blottnitz H; Petersen J
    Chemosphere; 2003 Sep; 52(10):1771-9. PubMed ID: 12871744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Leaching Characteristics of Solidified Products Containing Secondary Alkaline Lead Slag.
    Štulović M; Radovanović D; Kamberović Ž; Korać M; Anđić Z
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31195657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils.
    Mahedi M; Cetin B; Dayioglu AY
    J Environ Manage; 2020 Jan; 253():109720. PubMed ID: 31654932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of chromium speciation on disposal of discarded CCA-treated wood.
    Song J; Dubey B; Jang YC; Townsend T; Solo-Gabriele H
    J Hazard Mater; 2006 Feb; 128(2-3):280-8. PubMed ID: 16165268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations.
    Loncnar M; van der Sloot HA; Mladenovič A; Zupančič M; Kobal L; Bukovec P
    J Hazard Mater; 2016 Nov; 317():147-157. PubMed ID: 27262282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.
    Del Rey I; Ayuso J; Galvín AP; Jiménez JR; López M; García-Garrido ML
    Waste Manag; 2015 Dec; 46():278-86. PubMed ID: 26257054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.