These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Hexavalent chromium release from lignite fly ash and related ecotoxic effects. Darakas E; Tsiridis V; Petala M; Kungolos A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(11):1390-8. PubMed ID: 23705615 [TBL] [Abstract][Full Text] [Related]
23. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Stewart DI; Bray AW; Udoma G; Hobson AJ; Mayes WM; Rogerson M; Burke IT Environ Sci Pollut Res Int; 2018 Apr; 25(10):9861-9872. PubMed ID: 29372528 [TBL] [Abstract][Full Text] [Related]
24. The effects of soil organic matter on leaching of hexavalent chromium from concrete waste: Batch and column experiments. Eckbo C; Okkenhaug G; Hale SE J Environ Manage; 2022 May; 309():114708. PubMed ID: 35180438 [TBL] [Abstract][Full Text] [Related]
25. A clean approach for detoxification of industrial chromium-bearing stainless steel slag: Selective crystallization control and binary basicity effect. Huo X; Zhang X; Ding Z; Zhang M; Guo M J Hazard Mater; 2023 Mar; 446():130746. PubMed ID: 36630880 [TBL] [Abstract][Full Text] [Related]
26. Stabilization of carbon dioxide and chromium slag via carbonation. Wu X; Yu B; Xu W; Fan Z; Wu Z; Zhang H Environ Technol; 2017 Aug; 38(16):1997-2002. PubMed ID: 27766922 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact. Suh M; Troese MJ; Hall DA; Yasso B; Yzenas JJ; Proctor DM J Appl Toxicol; 2014 Dec; 34(12):1418-25. PubMed ID: 24395402 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge generated by the stainless steelmaking industry. Majuste D; Mansur MB J Hazard Mater; 2008 May; 153(1-2):89-95. PubMed ID: 17889435 [TBL] [Abstract][Full Text] [Related]
29. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
30. Characteristics of steel slag under different cooling conditions. Tossavainen M; Engstrom F; Yang Q; Menad N; Lidstrom Larsson M; Bjorkman B Waste Manag; 2007; 27(10):1335-44. PubMed ID: 17005388 [TBL] [Abstract][Full Text] [Related]
31. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag. Pantazopoulou E; Zouboulis A J Environ Manage; 2018 Jun; 216():257-262. PubMed ID: 28372833 [TBL] [Abstract][Full Text] [Related]
32. Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburisation slag designed for wastewater treatment. Zuo M; Renman G; Gustafsson JP; Renman A Water Res; 2015 Dec; 87():271-81. PubMed ID: 26433005 [TBL] [Abstract][Full Text] [Related]
33. The use of EAF dust in cement composites: assessment of environmental impact. Sturm T; Milacic R; Murko S; Vahcic M; Mladenovic A; Suput JS; Scancar J J Hazard Mater; 2009 Jul; 166(1):277-83. PubMed ID: 19097693 [TBL] [Abstract][Full Text] [Related]
34. Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes. Zhang M; Yang C; Zhao M; Yang K; Shen R; Zheng Y J Hazard Mater; 2017 Jan; 321():281-289. PubMed ID: 27637094 [TBL] [Abstract][Full Text] [Related]
35. Remediation of Cr(VI) from chromium slag by biocementation. Achal V; Pan X; Lee DJ; Kumari D; Zhang D Chemosphere; 2013 Oct; 93(7):1352-8. PubMed ID: 24001665 [TBL] [Abstract][Full Text] [Related]
36. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
37. Leaching modelling of slurry-phase carbonated steel slag. Costa G; Polettini A; Pomi R; Stramazzo A J Hazard Mater; 2016 Jan; 302():415-425. PubMed ID: 26489916 [TBL] [Abstract][Full Text] [Related]
38. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Kazakis N; Kantiranis N; Kalaitzidou K; Kaprara E; Mitrakas M; Frei R; Vargemezis G; Vogiatzis D; Zouboulis A; Filippidis A Environ Pollut; 2018 Apr; 235():632-641. PubMed ID: 29331896 [TBL] [Abstract][Full Text] [Related]
39. Controlling chromium slag pollution utilising scavengers: a case of Shandong Province, China. Liu C; Côté RP Waste Manag Res; 2015 Apr; 33(4):363-9. PubMed ID: 25784690 [TBL] [Abstract][Full Text] [Related]
40. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Oh C; Rhee S; Oh M; Park J J Hazard Mater; 2012 Apr; 213-214():147-55. PubMed ID: 22349716 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]