These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 26583419)
1. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds. Guerard JJ; Arey JS J Chem Theory Comput; 2013 Nov; 9(11):5046-58. PubMed ID: 26583419 [TBL] [Abstract][Full Text] [Related]
2. Theoretical Determination of One-Electron Oxidation Potentials for Nucleic Acid Bases. Psciuk BT; Lord RL; Munk BH; Schlegel HB J Chem Theory Comput; 2012 Dec; 8(12):5107-23. PubMed ID: 26593200 [TBL] [Abstract][Full Text] [Related]
3. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Guerard JJ; Tentscher PR; Seijo M; Samuel Arey J Phys Chem Chem Phys; 2015 Jun; 17(22):14811-26. PubMed ID: 25978135 [TBL] [Abstract][Full Text] [Related]
4. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
6. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds. Sviatenko LK; Gorb L; Hill FC; Leszczynski J J Comput Chem; 2013 May; 34(13):1094-100. PubMed ID: 23335274 [TBL] [Abstract][Full Text] [Related]
8. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Ho J Phys Chem Chem Phys; 2015 Jan; 17(4):2859-68. PubMed ID: 25503399 [TBL] [Abstract][Full Text] [Related]
9. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches. Isegawa M; Neese F; Pantazis DA J Chem Theory Comput; 2016 May; 12(5):2272-84. PubMed ID: 27065224 [TBL] [Abstract][Full Text] [Related]
10. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. Shivakumar D; Deng Y; Roux B J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601 [TBL] [Abstract][Full Text] [Related]
11. Improving Performance of the SMD Solvation Model: Bondi Radii Improve Predicted Aqueous Solvation Free Energies of Ions and p Mirzaei S; Ivanov MV; Timerghazin QK J Phys Chem A; 2019 Nov; 123(44):9498-9504. PubMed ID: 31318553 [TBL] [Abstract][Full Text] [Related]
12. Computational Electrochemistry of Ruthenium Anticancer Agents. Unprecedented Benchmarking of Implicit Solvation Methods. Chiorescu I; Deubel DV; Arion VB; Keppler BK J Chem Theory Comput; 2008 Mar; 4(3):499-506. PubMed ID: 26620790 [TBL] [Abstract][Full Text] [Related]
13. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane. Mehta N; Datta SN J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851 [TBL] [Abstract][Full Text] [Related]
14. SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657 [TBL] [Abstract][Full Text] [Related]
15. Multistep Explicit Solvation Protocol for Calculation of Redox Potentials. Sterling CM; Bjornsson R J Chem Theory Comput; 2019 Jan; 15(1):52-67. PubMed ID: 30511855 [TBL] [Abstract][Full Text] [Related]
16. Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches. Kolář M; Fanfrlík J; Lepšík M; Forti F; Luque FJ; Hobza P J Phys Chem B; 2013 May; 117(19):5950-62. PubMed ID: 23600402 [TBL] [Abstract][Full Text] [Related]
17. Thermochemistry of arylselanyl radicals and the pertinent ions in acetonitrile. Holm AH; Yusta L; Carlqvist P; Brinck T; Daasbjerg K J Am Chem Soc; 2003 Feb; 125(8):2148-57. PubMed ID: 12590543 [TBL] [Abstract][Full Text] [Related]
18. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG J Comput Aided Mol Des; 2010 Apr; 24(4):317-33. PubMed ID: 20358259 [TBL] [Abstract][Full Text] [Related]
19. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile. Zanith CC; Pliego JR J Comput Aided Mol Des; 2015 Mar; 29(3):217-24. PubMed ID: 25398641 [TBL] [Abstract][Full Text] [Related]
20. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]