These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26583422)

  • 1. Molecular Force Field Development for Aqueous Electrolytes: 1. Incorporating Appropriate Experimental Data and the Inadequacy of Simple Electrolyte Force Fields Based on Lennard-Jones and Point Charge Interactions with Lorentz-Berthelot Rules.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2013 Nov; 9(11):5076-85. PubMed ID: 26583422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations.
    Moučka F; Nezbeda I; Smith WR
    J Chem Phys; 2013 Apr; 138(15):154102. PubMed ID: 23614407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The short range anion-H interaction is the driving force for crystal formation of ions in water.
    Alejandre J; Chapela GA; Bresme F; Hansen JP
    J Chem Phys; 2009 May; 130(17):174505. PubMed ID: 19425788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2015 Apr; 11(4):1756-64. PubMed ID: 26574385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.
    Moučka F; Lísal M; Smith WR
    J Phys Chem B; 2012 May; 116(18):5468-78. PubMed ID: 22475081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation study of the structure of LiCl aqueous solutions: test of non-standard mixing rules in the ion interaction.
    Aragones JL; Rovere M; Vega C; Gallo P
    J Phys Chem B; 2014 Jul; 118(28):7680-91. PubMed ID: 24702562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl.
    Moučka F; Lísal M; Škvor J; Jirsák J; Nezbeda I; Smith WR
    J Phys Chem B; 2011 Jun; 115(24):7849-61. PubMed ID: 21627127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of aqueous electrolytes: water chemical potential results and Gibbs-Duhem equation consistency tests.
    Moučka F; Nezbeda I; Smith WR
    J Chem Phys; 2013 Sep; 139(12):124505. PubMed ID: 24089784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic force field optimization based on single-ion and ion-pair solvation properties.
    Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR
    J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility.
    Dočkal J; Lísal M; Moučka F
    J Chem Theory Comput; 2020 Jun; 16(6):3677-3688. PubMed ID: 32396723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution.
    Reiser S; Deublein S; Vrabec J; Hasse H
    J Chem Phys; 2014 Jan; 140(4):044504. PubMed ID: 25669552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl
    Moučka F; Kolafa J; Lísal M; Smith WR
    J Chem Phys; 2018 Jun; 148(22):222832. PubMed ID: 29907058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility of KF and NaCl in water by molecular simulation.
    Sanz E; Vega C
    J Chem Phys; 2007 Jan; 126(1):014507. PubMed ID: 17212500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach for designing simple point charge models for liquid water with three interaction sites.
    Glättli A; Daura X; Van Gunsteren WF
    J Comput Chem; 2003 Jul; 24(9):1087-96. PubMed ID: 12759908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate.
    Docherty H; Galindo A; Vega C; Sanz E
    J Chem Phys; 2006 Aug; 125(7):074510. PubMed ID: 16942354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions.
    Mao AH; Pappu RV
    J Chem Phys; 2012 Aug; 137(6):064104. PubMed ID: 22897252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force field for halide and alkali ions in water based on single-ion and ion-pair thermodynamic properties for a wide range of concentrations.
    Duenas-Herrera M; Bonthuis DJ; Loche P; Netz RR; Scalfi L
    J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39158049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.