These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26583506)
1. Role of the active viscosity and self-propelling speed in channel flows of active polar liquid crystals. Yang X; Wang Q Soft Matter; 2016 Jan; 12(4):1262-78. PubMed ID: 26583506 [TBL] [Abstract][Full Text] [Related]
2. Minimal model for transient swimming in a liquid crystal. Krieger MS; Dias MA; Powers TR Eur Phys J E Soft Matter; 2015 Aug; 38(8):94. PubMed ID: 26314259 [TBL] [Abstract][Full Text] [Related]
3. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime. Forest MG; Wang Q; Zhou R Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540 [TBL] [Abstract][Full Text] [Related]
4. Control of active turbulence through addressable soft interfaces. Guillamat P; Hardoüin J; Prat BM; Ignés-Mullol J; Sagués F J Phys Condens Matter; 2017 Dec; 29(50):504003. PubMed ID: 29125475 [TBL] [Abstract][Full Text] [Related]
5. Capillary instability of axisymmetric, active liquid crystal jets. Yang X; Wang Q Soft Matter; 2014 Sep; 10(35):6758-76. PubMed ID: 25074458 [TBL] [Abstract][Full Text] [Related]
6. Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics. Hemingway EJ; Cates ME; Fielding SM Phys Rev E; 2016 Mar; 93(3):032702. PubMed ID: 27078422 [TBL] [Abstract][Full Text] [Related]
7. Microscale locomotion in a nematic liquid crystal. Krieger MS; Spagnolie SE; Powers T Soft Matter; 2015 Dec; 11(47):9115-25. PubMed ID: 26412078 [TBL] [Abstract][Full Text] [Related]
8. Active micromachines: Microfluidics powered by mesoscale turbulence. Thampi SP; Doostmohammadi A; Shendruk TN; Golestanian R; Yeomans JM Sci Adv; 2016 Jul; 2(7):e1501854. PubMed ID: 27419229 [TBL] [Abstract][Full Text] [Related]
9. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows. Hamlin ND; Newman WI Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524 [TBL] [Abstract][Full Text] [Related]
10. Traveling waves at the surface of active liquid crystals. Gulati P; Caballero F; Kolvin I; You Z; Marchetti MC Soft Matter; 2024 Oct; 20(38):7703-7714. PubMed ID: 39295288 [TBL] [Abstract][Full Text] [Related]
12. Locomotion and transport in a hexatic liquid crystal. Krieger MS; Spagnolie SE; Powers TR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052503. PubMed ID: 25493806 [TBL] [Abstract][Full Text] [Related]
13. Control of active liquid crystals with a magnetic field. Guillamat P; Ignés-Mullol J; Sagués F Proc Natl Acad Sci U S A; 2016 May; 113(20):5498-502. PubMed ID: 27140604 [TBL] [Abstract][Full Text] [Related]
14. Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals. Dierking I; Ravnik M; Lark E; Healey J; Alexander GP; Yeomans JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021703. PubMed ID: 22463227 [TBL] [Abstract][Full Text] [Related]
15. Instabilities in a two-dimensional polar-filament--motor system. Rühle V; Ziebert F; Peter R; Zimmermann W Eur Phys J E Soft Matter; 2008 Nov; 27(3):243-51. PubMed ID: 18972145 [TBL] [Abstract][Full Text] [Related]
16. A phenomenological continuum model for force-driven nano-channel liquid flows. Ghorbanian J; Celebi AT; Beskok A J Chem Phys; 2016 Nov; 145(18):184109. PubMed ID: 27846688 [TBL] [Abstract][Full Text] [Related]
17. Universal power law in the orientational relaxation in thermotropic liquid crystals. Chakrabarti D; Jose PP; Chakrabarty S; Bagchi B Phys Rev Lett; 2005 Nov; 95(19):197801. PubMed ID: 16384024 [TBL] [Abstract][Full Text] [Related]
18. Morphology and growth of polarized tissues. Blanch-Mercader C; Casademunt J; Joanny JF Eur Phys J E Soft Matter; 2014 May; 37(5):41. PubMed ID: 24853635 [TBL] [Abstract][Full Text] [Related]
19. Surface viscosity in nematic liquid crystals. Barbero G; Pandolfi L Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051701. PubMed ID: 19518468 [TBL] [Abstract][Full Text] [Related]
20. Steady two-layer flows over an obstacle. Dias F; Vanden-Broeck JM Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2137-54. PubMed ID: 12804231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]