BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26583526)

  • 1. Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion.
    Buyukcakir O; Je SH; Choi DS; Talapaneni SN; Seo Y; Jung Y; Polychronopoulou K; Coskun A
    Chem Commun (Camb); 2016 Jan; 52(5):934-7. PubMed ID: 26583526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charged Covalent Triazine Frameworks for CO
    Buyukcakir O; Je SH; Talapaneni SN; Kim D; Coskun A
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7209-7216. PubMed ID: 28177215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion.
    Wang J; Sng W; Yi G; Zhang Y
    Chem Commun (Camb); 2015 Aug; 51(60):12076-9. PubMed ID: 26121326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic-Liquid-Modified Click-Based Porous Organic Polymers for Controlling Capture and Catalytic Conversion of CO
    Cui C; Sa R; Hong Z; Zhong H; Wang R
    ChemSusChem; 2020 Jan; 13(1):180-187. PubMed ID: 31710182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion.
    Wang J; Wei Yang JG; Yi G; Zhang Y
    Chem Commun (Camb); 2015 Nov; 51(86):15708-11. PubMed ID: 26365361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing POSS and viologen-linked porous cationic frameworks induced by the Zincke reaction for efficient CO
    Chen G; Huang X; Zhang Y; Sun M; Shen J; Huang R; Tong M; Long Z; Wang X
    Chem Commun (Camb); 2018 Oct; 54(86):12174-12177. PubMed ID: 30204159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.
    Jalilov AS; Ruan G; Hwang CC; Schipper DE; Tour JJ; Li Y; Fei H; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1376-82. PubMed ID: 25531980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Carbon Dioxide Capture and Conversion in Porous Materials.
    Zhang Y; Lim DS
    ChemSusChem; 2015 Aug; 8(16):2606-8. PubMed ID: 26216701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanded organic building units for the construction of highly porous metal-organic frameworks.
    Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD
    Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically Mesoporous o-Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO2 Capture and Conversion.
    Ji G; Yang Z; Zhang H; Zhao Y; Yu B; Ma Z; Liu Z
    Angew Chem Int Ed Engl; 2016 Aug; 55(33):9685-9. PubMed ID: 27199160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Versatile Cu
    De D; Pal TK; Neogi S; Senthilkumar S; Das D; Gupta SS; Bharadwaj PK
    Chemistry; 2016 Mar; 22(10):3387-3396. PubMed ID: 26833880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO(2) selective 1D double chain dipyridyl-porphyrin based porous coordination polymers.
    Kim HC; Lee YS; Huh S; Lee SJ; Kim Y
    Dalton Trans; 2014 Apr; 43(15):5680-6. PubMed ID: 24496095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of gas sorption properties of neutral and anionic metal-organic frameworks prepared from the same building blocks but in different solvent systems.
    Choi MH; Park HJ; Hong DH; Suh MP
    Chemistry; 2013 Dec; 19(51):17432-8. PubMed ID: 24318268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic glucose isomerization by porous coordination polymers with open metal sites.
    Akiyama G; Matsuda R; Sato H; Kitagawa S
    Chem Asian J; 2014 Oct; 9(10):2772-7. PubMed ID: 25080129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Investigation of the Effect of Polymerization Routes on the Gas-Sorption Properties of Nanoporous Azobenzene Polymers.
    Buyukcakir O; Je SH; Park J; Patel HA; Jung Y; Yavuz CT; Coskun A
    Chemistry; 2015 Oct; 21(43):15320-7. PubMed ID: 26471444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.
    Xiang Z; Mercado R; Huck JM; Wang H; Guo Z; Wang W; Cao D; Haranczyk M; Smit B
    J Am Chem Soc; 2015 Oct; 137(41):13301-7. PubMed ID: 26412410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites.
    Patel HA; Yavuz CT
    Faraday Discuss; 2015; 183():401-12. PubMed ID: 26388535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microporous Metal-Organic Framework Stabilized by Balanced Multiple Host-Couteranion Hydrogen-Bonding Interactions for High-Density CO2 Capture at Ambient Conditions.
    Ye Y; Xiong S; Wu X; Zhang L; Li Z; Wang L; Ma X; Chen QH; Zhang Z; Xiang S
    Inorg Chem; 2016 Jan; 55(1):292-9. PubMed ID: 26653758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.