BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26583542)

  • 21. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.
    Mitin AV; van Wüllen C
    J Chem Phys; 2006 Feb; 124(6):64305. PubMed ID: 16483205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relativistic effects on nuclear magnetic shieldings of CH(n)X(4-n) and CHXYZ (X, Y, Z = H, F, Cl, Br, I).
    Melo JI; Maldonado AF; Aucar GA
    J Chem Phys; 2012 Dec; 137(21):214319. PubMed ID: 23231243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent effects on heavy atom nuclear spin-spin coupling constants: a theoretical study of Hg-C and Pt-P couplings.
    Autschbach J; Ziegler T
    J Am Chem Soc; 2001 Apr; 123(14):3341-9. PubMed ID: 11457070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations.
    Holmes ST; Schurko RW
    J Chem Theory Comput; 2019 Mar; 15(3):1785-1797. PubMed ID: 30721042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning-based correction for spin-orbit coupling effects in NMR chemical shift calculations.
    Kleine Büning JB; Grimme S; Bursch M
    Phys Chem Chem Phys; 2024 Feb; 26(6):4870-4884. PubMed ID: 38230684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy Halogen Atom Effect on (13)C NMR Chemical Shifts in Monohalo Derivatives of Cyclohexane and Pyran. Experimental and Theoretical Study.
    Neto AC; Ducati LC; Rittner R; Tormena CF; Contreras RH; Frenking G
    J Chem Theory Comput; 2009 Sep; 5(9):2222-8. PubMed ID: 26616608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combined experimental and quantum chemistry study of selenium chemical shift tensors.
    Demko BA; Eichele K; Wasylishen RE
    J Phys Chem A; 2006 Dec; 110(50):13537-50. PubMed ID: 17165881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of stereoelectronic interactions on the relativistic spin-orbit and paramagnetic components of the (13)C NMR shielding tensors of dihaloethenes.
    Viesser RV; Ducati LC; Autschbach J; Tormena CF
    Phys Chem Chem Phys; 2015 Jul; 17(29):19315-24. PubMed ID: 26138131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.
    Pawlak T; Munzarová ML; Pazderski L; Marek R
    J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zeroth order regular approximation approach to parity violating nuclear magnetic resonance shielding tensors.
    Nahrwold S; Berger R
    J Chem Phys; 2009 Jun; 130(21):214101. PubMed ID: 19508050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra.
    Sinnecker S; Slep LD; Bill E; Neese F
    Inorg Chem; 2005 Apr; 44(7):2245-54. PubMed ID: 15792459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).
    Flórez E; Maldonado AF; Aucar GA; David J; Restrepo A
    Phys Chem Chem Phys; 2016 Jan; 18(3):1537-50. PubMed ID: 26670708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem.
    Nichols P; Govind N; Bylaska EJ; de Jong WA
    J Chem Theory Comput; 2009 Mar; 5(3):491-9. PubMed ID: 26610216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shielding and indirect spin-spin coupling tensors in the presence of a heavy atom: an experimental and theoretical study of bis(phenylethynyl)mercury.
    Gryff-Keller A; Kraska-Dziadecka A; Molchanov S; Wodyński A
    J Phys Chem A; 2012 Nov; 116(43):10615-20. PubMed ID: 23050748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations.
    Melo JI; Maldonado AF; Aucar GA
    J Chem Inf Model; 2020 Feb; 60(2):722-730. PubMed ID: 31877038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory.
    Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE
    Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of relativistic effective core potentials in DFT calculations on actinide compounds.
    Odoh SO; Schreckenbach G
    J Phys Chem A; 2010 Feb; 114(4):1957-63. PubMed ID: 20039716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.