BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 26583552)

  • 1. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.
    Barone V; Carnimeo I; Scalmani G
    J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces.
    Nishimoto Y
    J Phys Chem A; 2016 Feb; 120(5):771-84. PubMed ID: 26761635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.
    Caricato M
    J Chem Phys; 2013 Jul; 139(4):044116. PubMed ID: 23901969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation energies in solution: the fully polarizable QM/MM/PCM method.
    Steindal AH; Ruud K; Frediani L; Aidas K; Kongsted J
    J Phys Chem B; 2011 Mar; 115(12):3027-37. PubMed ID: 21391548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes.
    Bold BM; Sokolov M; Maity S; Wanko M; Dohmen PM; Kranz JJ; Kleinekathöfer U; Höfener S; Elstner M
    Phys Chem Chem Phys; 2020 May; 22(19):10500-10518. PubMed ID: 31950960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Dependent Long-Range-Corrected Density-Functional Tight-Binding Method Combined with the Polarizable Continuum Model.
    Nishimoto Y
    J Phys Chem A; 2019 Jul; 123(26):5649-5659. PubMed ID: 31150233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range correction for tight-binding TD-DFT.
    Humeniuk A; Mitrić R
    J Chem Phys; 2015 Oct; 143(13):134120. PubMed ID: 26450305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical excited state forces for the time-dependent density-functional tight-binding method.
    Heringer D; Niehaus TA; Wanko M; Frauenheim T
    J Comput Chem; 2007 Dec; 28(16):2589-601. PubMed ID: 17568436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensions of the Time-Dependent Density Functional Based Tight-Binding Approach.
    Domínguez A; Aradi B; Frauenheim T; Lutsker V; Niehaus TA
    J Chem Theory Comput; 2013 Nov; 9(11):4901-14. PubMed ID: 26583409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited states of ladder-type π-conjugated dyes with a joint SOS-CIS(D) and PCM-TD-DFT approach.
    Chibani S; Laurent AD; Le Guennic B; Jacquemin D
    J Phys Chem A; 2015 May; 119(21):5417-25. PubMed ID: 25522826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods.
    Scholz R; Luschtinetz R; Seifert G; Jägeler-Hoheisel T; Körner C; Leo K; Rapacioli M
    J Phys Condens Matter; 2013 Nov; 25(47):473201. PubMed ID: 24135026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tight-binding approximations to time-dependent density functional theory - A fast approach for the calculation of electronically excited states.
    Rüger R; van Lenthe E; Heine T; Visscher L
    J Chem Phys; 2016 May; 144(18):184103. PubMed ID: 27179467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergence of Excitation Energies in Mixed Quantum and Classical Solvent: Comparison of Continuum and Point Charge Models.
    Provorse MR; Peev T; Xiong C; Isborn CM
    J Phys Chem B; 2016 Dec; 120(47):12148-12159. PubMed ID: 27797196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical Time-Dependent Long-Range Corrected Density Functional Tight Binding (TD-LC-DFTB) Gradients in DFTB+: Implementation and Benchmark for Excited-State Geometries and Transition Energies.
    Sokolov M; Bold BM; Kranz JJ; Höfener S; Niehaus TA; Elstner M
    J Chem Theory Comput; 2021 Apr; 17(4):2266-2282. PubMed ID: 33689344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding intermolecular interactions of large systems in ground state and excited state by using density functional based tight binding methods.
    Xu Y; Friedman R; Wu W; Su P
    J Chem Phys; 2021 May; 154(19):194106. PubMed ID: 34240911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Explicit Quantum Solvent with a Polarizable Continuum Model.
    Provorse Long MR; Isborn CM
    J Phys Chem B; 2017 Nov; 121(43):10105-10117. PubMed ID: 28992689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time-dependent density functional theory.
    Mennucci B; Cappelli C; Guido CA; Cammi R; Tomasi J
    J Phys Chem A; 2009 Apr; 113(13):3009-20. PubMed ID: 19226132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical derivative couplings within the framework of time-dependent density functional theory coupled with conductor-like polarizable continuum model: Formalism, implementation, and applications.
    Huang X; Pei Z; Liang W
    J Chem Phys; 2023 Jan; 158(4):044122. PubMed ID: 36725492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Ab Initio Anharmonic Vibrational Circular Dichroism Spectra in the Condensed Phase.
    Cappelli C; Bloino J; Lipparini F; Barone V
    J Phys Chem Lett; 2012 Jul; 3(13):1766-73. PubMed ID: 26291857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.