BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26583552)

  • 21. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM).
    Iozzi MF; Mennucci B; Tomasi J; Cammi R
    J Chem Phys; 2004 Apr; 120(15):7029-40. PubMed ID: 15267604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brueckner doubles coupled cluster method with the polarizable continuum model of solvation.
    Caricato M; Scalmani G; Frisch MJ
    J Chem Phys; 2011 Jun; 134(24):244113. PubMed ID: 21721618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.
    Manzoni V; Lyra ML; Coutinho K; Canuto S
    J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping.
    Stojanović L; Aziz SG; Hilal RH; Plasser F; Niehaus TA; Barbatti M
    J Chem Theory Comput; 2017 Dec; 13(12):5846-5860. PubMed ID: 29140693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-Dependent Density Functional Tight Binding: New Formulation and Benchmark of Excited States.
    Trani F; Scalmani G; Zheng G; Carnimeo I; Frisch MJ; Barone V
    J Chem Theory Comput; 2011 Oct; 7(10):3304-13. PubMed ID: 26598164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model.
    Liu J; Liang W
    J Chem Phys; 2013 Jan; 138(2):024101. PubMed ID: 23320662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective Fully Polarizable QM/MM Approach To Model Vibrational Circular Dichroism Spectra of Systems in Aqueous Solution.
    Giovannini T; Olszòwka M; Cappelli C
    J Chem Theory Comput; 2016 Nov; 12(11):5483-5492. PubMed ID: 27704812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation.
    Zeng Q; Liang W
    J Chem Phys; 2015 Oct; 143(13):134104. PubMed ID: 26450289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The electronic circular dichroism of nicotine in aqueous solution: a test case for continuum and mixed explicit-continuum solvation approaches.
    Egidi F; Russo R; Carnimeo I; D'Urso A; Mancini G; Cappelli C
    J Phys Chem A; 2015 May; 119(21):5396-404. PubMed ID: 25568940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorption Properties of Large Complex Molecular Systems: The DFTB/Fluctuating Charge Approach.
    Lafiosca P; Gómez S; Giovannini T; Cappelli C
    J Chem Theory Comput; 2022 Mar; 18(3):1765-1779. PubMed ID: 35184553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TD-DFT and TD-DFTB Investigation of the Optical Properties and Electronic Structure of Silver Nanorods and Nanorod Dimers.
    Alkan F; Aikens CM
    J Phys Chem C Nanomater Interfaces; 2018 Oct; 122(41):23639-23650. PubMed ID: 30364415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: theory of the solvent effect on the electronic excitation of molecules in solution.
    Cammi R; Fukuda R; Ehara M; Nakatsuji H
    J Chem Phys; 2010 Jul; 133(2):024104. PubMed ID: 20632745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach.
    Improta R; Scalmani G; Frisch MJ; Barone V
    J Chem Phys; 2007 Aug; 127(7):074504. PubMed ID: 17718617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A variational formulation of the polarizable continuum model.
    Lipparini F; Scalmani G; Mennucci B; Cancès E; Caricato M; Frisch MJ
    J Chem Phys; 2010 Jul; 133(1):014106. PubMed ID: 20614958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution.
    Improta R; Barone V; Scalmani G; Frisch MJ
    J Chem Phys; 2006 Aug; 125(5):054103. PubMed ID: 16942199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.
    Nishimoto Y
    J Chem Phys; 2015 Sep; 143(9):094108. PubMed ID: 26342360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of Structural Evolution Using Time-Dependent Density-Functional Based Tight-Binding Method.
    Lee SM; Niehaus TA
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7206-7209. PubMed ID: 32604584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.