These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26583557)
1. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model. Zhu T; Zhang JZ; He X J Chem Theory Comput; 2013 Apr; 9(4):2104-14. PubMed ID: 26583557 [TBL] [Abstract][Full Text] [Related]
2. Automated fragmentation quantum mechanical calculation of Shi M; Jin X; Wan Z; He X J Chem Phys; 2021 Feb; 154(6):064502. PubMed ID: 33588539 [TBL] [Abstract][Full Text] [Related]
3. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
4. Automated Fragmentation Quantum Mechanical Calculation of Zhang J; Kriebel CN; Wan Z; Shi M; Glaubitz C; He X J Chem Theory Comput; 2023 Oct; 19(20):7405-7422. PubMed ID: 37788419 [TBL] [Abstract][Full Text] [Related]
5. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method. Zhu T; Zhang JZ; He X Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959 [TBL] [Abstract][Full Text] [Related]
6. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules. Swails J; Zhu T; He X; Case DA J Biomol NMR; 2015 Oct; 63(2):125-39. PubMed ID: 26232926 [TBL] [Abstract][Full Text] [Related]
7. Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Zhu T; He X; Zhang JZ Phys Chem Chem Phys; 2012 Jun; 14(21):7837-45. PubMed ID: 22314755 [TBL] [Abstract][Full Text] [Related]
8. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. He X; Wang B; Merz KM J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540 [TBL] [Abstract][Full Text] [Related]
9. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 2. Level of Theory, Basis Set, and Solvents Model Dependence. Frank A; Möller HM; Exner TE J Chem Theory Comput; 2012 Apr; 8(4):1480-92. PubMed ID: 26596758 [TBL] [Abstract][Full Text] [Related]
10. Automated Fragmentation QM/MM Calculation of NMR Chemical Shifts for Protein-Ligand Complexes. Jin X; Zhu T; Zhang JZH; He X Front Chem; 2018; 6():150. PubMed ID: 29868556 [TBL] [Abstract][Full Text] [Related]
11. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections. Fedorov SV; Rusakov YY; Krivdin LB Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415 [TBL] [Abstract][Full Text] [Related]
12. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water. Manzoni V; Lyra ML; Coutinho K; Canuto S J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694 [TBL] [Abstract][Full Text] [Related]
13. Solvatochromic Shift of Brooker's Merocyanine: Hartree-Fock Exchange in Time Dependent Density Functional Calculation and Hydrogen Bonding Effect. Wada T; Nakano H; Sato H J Chem Theory Comput; 2014 Oct; 10(10):4535-47. PubMed ID: 26588147 [TBL] [Abstract][Full Text] [Related]
14. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS). Sinnecker S; Rajendran A; Klamt A; Diedenhofen M; Neese F J Phys Chem A; 2006 Feb; 110(6):2235-45. PubMed ID: 16466261 [TBL] [Abstract][Full Text] [Related]
15. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. Jose KV; Raghavachari K J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972 [TBL] [Abstract][Full Text] [Related]
16. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method. Chandy SK; Thapa B; Raghavachari K Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526 [TBL] [Abstract][Full Text] [Related]
17. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
18. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 3. Conformational Sampling and Explicit Solvents Model. Exner TE; Frank A; Onila I; Möller HM J Chem Theory Comput; 2012 Nov; 8(11):4818-27. PubMed ID: 26605634 [TBL] [Abstract][Full Text] [Related]
19. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach? Kollar J; Frecer V J Mol Model; 2017 Dec; 24(1):11. PubMed ID: 29234892 [TBL] [Abstract][Full Text] [Related]
20. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system. Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]