These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26583674)

  • 1. Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability.
    Wezel A; Welten SM; Razawy W; Lagraauw HM; de Vries MR; Goossens EA; Boonstra MC; Hamming JF; Kandimalla ER; Kuiper J; Quax PH; Nossent AY; Bot I
    Ann Surg; 2015 Nov; 262(5):841-7; discussion 847-8. PubMed ID: 26583674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of 14q32 microRNA miR-495 reduces lesion formation, intimal hyperplasia and plasma cholesterol levels in experimental restenosis.
    Welten SMJ; de Jong RCM; Wezel A; de Vries MR; Boonstra MC; Parma L; Jukema JW; van der Sluis TC; Arens R; Bot I; Agrawal S; Quax PHA; Nossent AY
    Atherosclerosis; 2017 Jun; 261():26-36. PubMed ID: 28445809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia.
    Welten SM; Bastiaansen AJ; de Jong RC; de Vries MR; Peters EA; Boonstra MC; Sheikh SP; La Monica N; Kandimalla ER; Quax PH; Nossent AY
    Circ Res; 2014 Sep; 115(8):696-708. PubMed ID: 25085941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling.
    Chen YC; Bui AV; Diesch J; Manasseh R; Hausding C; Rivera J; Haviv I; Agrotis A; Htun NM; Jowett J; Hagemeyer CE; Hannan RD; Bobik A; Peter K
    Circ Res; 2013 Jul; 113(3):252-65. PubMed ID: 23748430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin receptor type 1 polymorphism A1166C is associated with altered AT1R and miR-155 expression in carotid plaque tissue and development of hypoechoic carotid plaques.
    Stanković A; Kolaković A; Živković M; Djurić T; Bundalo M; Končar I; Davidović L; Alavantić D
    Atherosclerosis; 2016 May; 248():132-9. PubMed ID: 27016615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans.
    Bidzhekov K; Gan L; Denecke B; Rostalsky A; Hristov M; Koeppel TA; Zernecke A; Weber C
    Thromb Haemost; 2012 Apr; 107(4):619-25. PubMed ID: 22370758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions.
    Eken SM; Jin H; Chernogubova E; Li Y; Simon N; Sun C; Korzunowicz G; Busch A; Bäcklund A; Österholm C; Razuvaev A; Renné T; Eckstein HH; Pelisek J; Eriksson P; González Díez M; Perisic Matic L; Schellinger IN; Raaz U; Leeper NJ; Hansson GK; Paulsson-Berne G; Hedin U; Maegdefessel L
    Circ Res; 2017 Feb; 120(4):633-644. PubMed ID: 27895035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA deregulation in symptomatic carotid plaque.
    Maitrias P; Metzinger-Le Meuth V; Massy ZA; M'Baya-Moutoula E; Reix T; Caus T; Metzinger L
    J Vasc Surg; 2015 Nov; 62(5):1245-50.e1. PubMed ID: 26238333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-145 targeted therapy reduces atherosclerosis.
    Lovren F; Pan Y; Quan A; Singh KK; Shukla PC; Gupta N; Steer BM; Ingram AJ; Gupta M; Al-Omran M; Teoh H; Marsden PA; Verma S
    Circulation; 2012 Sep; 126(11 Suppl 1):S81-90. PubMed ID: 22965997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-9 overexpression suppresses vulnerable atherosclerotic plaque and enhances vascular remodeling through negative regulation of the p38MAPK pathway via OLR1 in acute coronary syndrome.
    Yu DR; Wang T; Huang J; Fang XY; Fan HF; Yi GH; Liu Q; Zhang Y; Zeng XZ; Liu QB
    J Cell Biochem; 2020 Jan; 121(1):49-62. PubMed ID: 31571264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute Loss of miR-221 and miR-222 in the Atherosclerotic Plaque Shoulder Accompanies Plaque Rupture.
    Bazan HA; Hatfield SA; O'Malley CB; Brooks AJ; Lightell D; Woods TC
    Stroke; 2015 Nov; 46(11):3285-7. PubMed ID: 26451018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial Hypoxia-Inducible Factor-1α Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a.
    Akhtar S; Hartmann P; Karshovska E; Rinderknecht FA; Subramanian P; Gremse F; Grommes J; Jacobs M; Kiessling F; Weber C; Steffens S; Schober A
    Hypertension; 2015 Dec; 66(6):1220-6. PubMed ID: 26483345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-127-3p enhances macrophagic proliferation via disturbing fatty acid profiles and oxidative phosphorylation in atherosclerosis.
    Liu Y; Wu Y; Wang C; Hu W; Zou S; Ren H; Zuo Y; Qu L
    J Mol Cell Cardiol; 2024 Aug; 193():36-52. PubMed ID: 38795767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atherosclerotic plaque instability in carotid arteries: miR-200c as a promising biomarker.
    Magenta A; Sileno S; D'Agostino M; Persiani F; Beji S; Paolini A; Camilli D; Platone A; Capogrossi MC; Furgiuele S
    Clin Sci (Lond); 2018 Nov; 132(22):2423-2436. PubMed ID: 30389857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study.
    Raitoharju E; Lyytikäinen LP; Levula M; Oksala N; Mennander A; Tarkka M; Klopp N; Illig T; Kähönen M; Karhunen PJ; Laaksonen R; Lehtimäki T
    Atherosclerosis; 2011 Nov; 219(1):211-7. PubMed ID: 21820659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cross-sectional study comparing the expression of DNA repair molecules in subjects with and without atherosclerotic plaques.
    Arapi B; Unal S; Malikova N; Omeroglu SN; Guven M
    Mol Biol Rep; 2024 Sep; 51(1):953. PubMed ID: 39230767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. circRNA‑0006896‑miR1264‑DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis.
    Wen Y; Chun Y; Lian ZQ; Yong ZW; Lan YM; Huan L; Xi CY; Juan LS; Qing ZW; Jia C; Ji ZH
    Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33649864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-124-3p inhibits collagen synthesis in atherosclerotic plaques by targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) in vascular smooth muscle cells.
    Chen W; Yu F; Di M; Li M; Chen Y; Zhang Y; Liu X; Huang X; Zhang M
    Atherosclerosis; 2018 Oct; 277():98-107. PubMed ID: 30193190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of miR-142-5p in atherosclerotic plaques and regulation of oxidized low-density lipoprotein-induced apoptosis in macrophages.
    Xu R; Bi C; Song J; Wang L; Ge C; Liu X; Zhang M
    Mol Med Rep; 2015 May; 11(5):3229-34. PubMed ID: 25586666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice.
    Sala F; Aranda JF; Rotllan N; Ramírez CM; Aryal B; Elia L; Condorelli G; Catapano AL; Fernández-Hernando C; Norata GD
    Thromb Haemost; 2014 Oct; 112(4):796-802. PubMed ID: 25008143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.