These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 26583711)

  • 1. Correlation Consistent Gaussian Basis Sets for H, B-Ne with Dirac-Fock AREP Pseudopotentials: Applications in Quantum Monte Carlo Calculations.
    Xu J; Deible MJ; Peterson KA; Jordan KD
    J Chem Theory Comput; 2013 May; 9(5):2170-8. PubMed ID: 26583711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations.
    Burkatzki M; Filippi C; Dolg M
    J Chem Phys; 2008 Oct; 129(16):164115. PubMed ID: 19045255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact and flexible basis functions for quantum Monte Carlo calculations.
    Petruzielo FR; Toulouse J; Umrigar CJ
    J Chem Phys; 2010 Mar; 132(9):094109. PubMed ID: 20210391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-consistent pseudopotentials for quantum Monte Carlo calculations.
    Burkatzki M; Filippi C; Dolg M
    J Chem Phys; 2007 Jun; 126(23):234105. PubMed ID: 17600402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational and diffusion Monte Carlo study of post-d group 13-17 elements.
    Al-Saidi WA
    J Chem Phys; 2008 Aug; 129(6):064316. PubMed ID: 18715078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt.
    Figgen D; Peterson KA; Dolg M; Stoll H
    J Chem Phys; 2009 Apr; 130(16):164108. PubMed ID: 19405562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of H+H2 and several H-bonded molecules by phaseless auxiliary-field quantum Monte Carlo with plane wave and Gaussian basis sets.
    Al-Saidi WA; Krakauer H; Zhang S
    J Chem Phys; 2007 May; 126(19):194105. PubMed ID: 17523796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scheme for adding electron-nucleus cusps to Gaussian orbitals.
    Ma A; Towler MD; Drummond ND; Needs RJ
    J Chem Phys; 2005 Jun; 122(22):224322. PubMed ID: 15974683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide.
    Yu J; Wagner LK; Ertekin E
    J Chem Phys; 2015 Dec; 143(22):224707. PubMed ID: 26671396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules.
    Nemec N; Towler MD; Needs RJ
    J Chem Phys; 2010 Jan; 132(3):034111. PubMed ID: 20095732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion quantum Monte Carlo for equilibrium structures and harmonic frequencies of ethane and ozone molecules.
    Lu SI
    J Chem Phys; 2004 Jun; 120(22):10423-5. PubMed ID: 15268070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions.
    Prasad R; Umezawa N; Domin D; Salomon-Ferrer R; Lester WA
    J Chem Phys; 2007 Apr; 126(16):164109. PubMed ID: 17477591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrapolating to the one-electron basis-set limit in electronic structure calculations.
    Varandas AJ
    J Chem Phys; 2007 Jun; 126(24):244105. PubMed ID: 17614535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak binding between two aromatic rings: feeling the van der Waals attraction by quantum Monte Carlo methods.
    Sorella S; Casula M; Rocca D
    J Chem Phys; 2007 Jul; 127(1):014105. PubMed ID: 17627335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Electrical Properties from Quantum Monte Carlo Calculations: Application to Ethyne.
    Coccia E; Chernomor O; Barborini M; Sorella S; Guidoni L
    J Chem Theory Comput; 2012 Jun; 8(6):1952-62. PubMed ID: 26593830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate forces in quantum Monte Carlo calculations with nonlocal pseudopotentials.
    Badinski A; Needs RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036707. PubMed ID: 17930361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Monte Carlo study of the Ne atom and the Ne+ ion.
    Drummond ND; López Ríos P; Ma A; Trail JR; Spink GG; Towler MD; Needs RJ
    J Chem Phys; 2006 Jun; 124(22):224104. PubMed ID: 16784260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.