These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26583756)

  • 1. Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles.
    Martinsson E; Shahjamali MM; Large N; Zaraee N; Zhou Y; Schatz GC; Mirkin CA; Aili D
    Small; 2016 Jan; 12(3):330-42. PubMed ID: 26583756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices.
    Jeon HB; Tsalu PV; Ha JW
    Sci Rep; 2019 Sep; 9(1):13635. PubMed ID: 31541135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-Free Synthesis and Scalable Purification of Triangular Gold Nanoprisms with Low Non-Specific Cellular Uptake.
    Ramírez-Jiménez R; Artiga Á; Mitchell SG; Martín-Rapún R; de la Fuente JM
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the CTAB surfactant layer on optical properties of single metallic nanospheres.
    Movsesyan A; Marguet S; Muravitskaya A; Béal J; Adam PM; Baudrion AL
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):C78-C84. PubMed ID: 31873698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous localized surface plasmon resonance inflection points for enhanced sensitivity and tracking plasmon damping in single gold bipyramids.
    Tsalu PV; Kim GW; Hong JW; Ha JW
    Nanoscale; 2018 Jul; 10(26):12554-12563. PubMed ID: 29932189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Sensitivity of Localized Surface Plasmon Resonance Transducers Using Reflection Measurements.
    Kedem O; Vaskevich A; Rubinstein I
    J Phys Chem Lett; 2011 May; 2(10):1223-6. PubMed ID: 26295330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity.
    Khalavka Y; Becker J; Sönnichsen C
    J Am Chem Soc; 2009 Feb; 131(5):1871-5. PubMed ID: 19154114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanorod biochip functionalization by antibody thiolation.
    Wang X; Mei Z; Wang Y; Tang L
    Talanta; 2015 May; 136():1-8. PubMed ID: 25702977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-Biofunctionalization of CTAC-Capped Gold Nanocubes.
    Slesiona N; Thamm S; Stolle HLKS; Weißenborn V; Müller P; Csáki A; Fritzsche W
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32517070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media.
    Tebbe M; Kuttner C; Männel M; Fery A; Chanana M
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5984-91. PubMed ID: 25706195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape tailored green synthesis and catalytic properties of gold nanocrystals.
    Rajan A; MeenaKumari M; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():793-9. PubMed ID: 24152864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the kinetics of seeded growth for edge-selective metal deposition and the formation of concave au nanocrystals.
    Laskar M; Zhong X; Li ZY; Skrabalak SE
    ChemSusChem; 2013 Oct; 6(10):1959-65. PubMed ID: 23940097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.
    Wall MA; Harmsen S; Pal S; Zhang L; Arianna G; Lombardi JR; Drain CM; Kircher MF
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28374940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors.
    Dong P; Lin Y; Deng J; Di J
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2392-9. PubMed ID: 23477284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.