These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26583784)

  • 1. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation.
    Shilo M; Berenstein P; Dreifuss T; Nash Y; Goldsmith G; Kazimirsky G; Motiei M; Frenkel D; Brodie C; Popovtzer R
    Nanoscale; 2015 Dec; 7(48):20489-96. PubMed ID: 26583784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications.
    Shilo M; Motiei M; Hana P; Popovtzer R
    Nanoscale; 2014 Feb; 6(4):2146-52. PubMed ID: 24362586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High drug-loading gold nanoclusters for responsive glucose control in type 1 diabetes.
    Zhang Y; Wu M; Dai W; Chen M; Guo Z; Wang X; Tan D; Shi K; Xue L; Liu S; Lei Y
    J Nanobiotechnology; 2019 Jun; 17(1):74. PubMed ID: 31159842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the opportunity of tight glycaemic control. Far from goal.
    Del Prato S
    Diabetes Obes Metab; 2005 Nov; 7 Suppl 1():S1-4. PubMed ID: 16135133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance.
    Wong TW; Sumiran N
    J Pharm Pharmacol; 2014 May; 66(5):646-57. PubMed ID: 24329400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging.
    Kim D; Park S; Lee JH; Jeong YY; Jon S
    J Am Chem Soc; 2007 Jun; 129(24):7661-5. PubMed ID: 17530850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation.
    Frigell J; García I; Gómez-Vallejo V; Llop J; Penadés S
    J Am Chem Soc; 2014 Jan; 136(1):449-57. PubMed ID: 24320878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, characterization, and evaluation in vivo of Ins-SiO₂-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin.
    Zhao X; Shan C; Zu Y; Zhang Y; Wang W; Wang K; Sui X; Li R
    Int J Pharm; 2013 Sep; 454(1):278-84. PubMed ID: 23830939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study.
    Betzer O; Shilo M; Opochinsky R; Barnoy E; Motiei M; Okun E; Yadid G; Popovtzer R
    Nanomedicine (Lond); 2017 Jul; 12(13):1533-1546. PubMed ID: 28621578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Current issues in the therapy of diabetes mellitus].
    Halmos T
    Orv Hetil; 2004 Nov; 145(47):2363-70. PubMed ID: 15641668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body mass index and the efficacy of needle-free jet injection for the administration of rapid-acting insulin analogs, a post hoc analysis.
    de Galan BE; Engwerda EE; Abbink EJ; Tack CJ
    Diabetes Obes Metab; 2013 Jan; 15(1):84-6. PubMed ID: 22830987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles.
    Hao Y; Yang X; Song S; Huang M; He C; Cui M; Chen J
    Nanotechnology; 2012 Feb; 23(4):045103. PubMed ID: 22222168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Dextran-encapsulated gold nanoparticles as insulin carriers to prolong insulin activity.
    Lee KC; Chen WJ; Chen YC
    Nanomedicine (Lond); 2017 Aug; 12(15):1823-1834. PubMed ID: 28703075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice.
    Yang C; Tian A; Li Z
    Sci Rep; 2016 Feb; 6():20203. PubMed ID: 26830764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of insulin to improve glycemic control in diabetes mellitus.
    Dandona P; Chaudhuri A; Ghanim H; Mohanty P
    Cardiovasc Drugs Ther; 2008 Jun; 22(3):241-51. PubMed ID: 18347965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacing Insulin Glargine with Neutral Protamine Hagedorn (NPH) Insulin in a Subpopulation of Study Subjects in the Action to Control Cardiovascular Risk in Diabetes (ACCORD): Effects on Blood Glucose Levels, Hypoglycemia and Patient Satisfaction.
    Berard L; Cameron B; Woo V; Stewart J
    Can J Diabetes; 2015 Aug; 39(4):296-301. PubMed ID: 25819531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoclusters for controlled insulin release and glucose regulation in diabetes.
    Zhang Y; Wu M; Dai W; Li Y; Wang X; Tan D; Yang Z; Liu S; Xue L; Lei Y
    Nanoscale; 2019 Mar; 11(13):6471-6479. PubMed ID: 30892368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadium compounds as insulin mimics.
    Orvig C; Thompson KH; Battell M; McNeill JH
    Met Ions Biol Syst; 1995; 31():575-94. PubMed ID: 8564818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current insulin analogues in the treatment of diabetes: emphasis on type 2 diabetes.
    Esposito K; Giugliano D
    Expert Opin Biol Ther; 2012 Feb; 12(2):209-21. PubMed ID: 22214489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles.
    Chalasani KB; Russell-Jones GJ; Jain AK; Diwan PV; Jain SK
    J Control Release; 2007 Sep; 122(2):141-50. PubMed ID: 17707540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.