These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26584096)

  • 21. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory.
    Rohrdanz MA; Herbert JM
    J Chem Phys; 2008 Jul; 129(3):034107. PubMed ID: 18647016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin RM; Lomakina EI
    Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning exciton dynamics.
    Häse F; Valleau S; Pyzer-Knapp E; Aspuru-Guzik A
    Chem Sci; 2016 Aug; 7(8):5139-5147. PubMed ID: 30155164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods.
    Grimme S
    J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constant pressure ab initio molecular dynamics with discrete variable representation basis sets.
    Ma Z; Tuckerman M
    J Chem Phys; 2010 Nov; 133(18):184110. PubMed ID: 21073216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum chemistry structures and properties of 134 kilo molecules.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    Sci Data; 2014; 1():140022. PubMed ID: 25977779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the limits of accuracy in electronic structure calculations: is theory capable of results uniformly better than "chemical accuracy"?
    Feller D; Peterson KA
    J Chem Phys; 2007 Mar; 126(11):114105. PubMed ID: 17381194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simplified wave function models in thermochemical protocols based on bond separation reactions.
    Bakowies D
    J Phys Chem A; 2014 Dec; 118(50):11811-27. PubMed ID: 25426545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning model for non-equilibrium structures and energies of simple molecules.
    Iype E; Urolagin S
    J Chem Phys; 2019 Jan; 150(2):024307. PubMed ID: 30646726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning prediction of interaction energies in rigid water clusters.
    Bose S; Dhawan D; Nandi S; Sarkar RR; Ghosh D
    Phys Chem Chem Phys; 2018 Sep; 20(35):22987-22996. PubMed ID: 30156235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of atomization energy using graph kernel and active learning.
    Tang YH; de Jong WA
    J Chem Phys; 2019 Jan; 150(4):044107. PubMed ID: 30709286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alchemical and structural distribution based representation for universal quantum machine learning.
    Faber FA; Christensen AS; Huang B; von Lilienfeld OA
    J Chem Phys; 2018 Jun; 148(24):241717. PubMed ID: 29960351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning of free energies in chemical compound space using ensemble representations: Reaching experimental uncertainty for solvation.
    Weinreich J; Browning NJ; von Lilienfeld OA
    J Chem Phys; 2021 Apr; 154(13):134113. PubMed ID: 33832231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.