These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26584227)

  • 1. Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential.
    Mukherjee S; Zhou G; Michel C; Voelz VA
    J Phys Chem B; 2015 Dec; 119(50):15407-17. PubMed ID: 26584227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning peptoid secondary structure with pentafluoroaromatic functionality: a new design paradigm for the construction of discretely folded peptoid structures.
    Gorske BC; Blackwell HE
    J Am Chem Soc; 2006 Nov; 128(44):14378-87. PubMed ID: 17076512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.
    Voelz VA; Dill KA; Chorny I
    Biopolymers; 2011; 96(5):639-50. PubMed ID: 21184487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and spectroscopic studies of peptoid oligomers with alpha-chiral aliphatic side chains.
    Wu CW; Kirshenbaum K; Sanborn TJ; Patch JA; Huang K; Dill KA; Zuckermann RN; Barron AE
    J Am Chem Soc; 2003 Nov; 125(44):13525-30. PubMed ID: 14583049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains.
    Stringer JR; Crapster JA; Guzei IA; Blackwell HE
    J Am Chem Soc; 2011 Oct; 133(39):15559-67. PubMed ID: 21861531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins of Conformational Heterogeneity in Peptoid Helices Formed by Chiral
    Alamdari S; Pfaendtner J
    J Phys Chem B; 2023 Jul; 127(27):6163-6170. PubMed ID: 37379075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic Basis for the Stabilization of Helical Peptoids by Chiral Sidechains.
    Alamdari S; Torkelson K; Wang X; Chen CL; Ferguson AL; Pfaendtner J
    J Phys Chem B; 2023 Jul; 127(27):6171-6183. PubMed ID: 37379071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of nitroaromatic peptoids: fine tuning peptoid secondary structure through monomer position and functionality.
    Fowler SA; Luechapanichkul R; Blackwell HE
    J Org Chem; 2009 Feb; 74(4):1440-9. PubMed ID: 19159244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo structure prediction and experimental characterization of folded peptoid oligomers.
    Butterfoss GL; Yoo B; Jaworski JN; Chorny I; Dill KA; Zuckermann RN; Bonneau R; Kirshenbaum K; Voelz VA
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14320-5. PubMed ID: 22908242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Aminoxy Peptoids: A Unique Peptoid Backbone with a Preference for cis-Amide Bonds.
    Krieger V; Ciglia E; Thoma R; Vasylyeva V; Frieg B; de Sousa Amadeu N; Kurz T; Janiak C; Gohlke H; Hansen FK
    Chemistry; 2017 Mar; 23(15):3699-3707. PubMed ID: 28090689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconstrained peptoid tetramer exhibits a predominant conformation in aqueous solution.
    Roe LT; Pelton JG; Edison JR; Butterfoss GL; Tresca BW; LaFaye BA; Whitelam S; Wemmer DE; Zuckermann RN
    Biopolymers; 2019 Jun; 110(6):e23267. PubMed ID: 30835821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptoid oligomers with alpha-chiral, aromatic side chains: sequence requirements for the formation of stable peptoid helices.
    Wu CW; Sanborn TJ; Huang K; Zuckermann RN; Barron AE
    J Am Chem Soc; 2001 Jul; 123(28):6778-84. PubMed ID: 11448181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Peptoid Foldamers at Last.
    Laursen JS; Engel-Andreasen J; Olsen CA
    Acc Chem Res; 2015 Oct; 48(10):2696-704. PubMed ID: 26176689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of peptoids with all trans-amide backbones and peptoid reverse turns via the tactical incorporation of N-aryl side chains capable of hydrogen bonding.
    Stringer JR; Crapster JA; Guzei IA; Blackwell HE
    J Org Chem; 2010 Sep; 75(18):6068-78. PubMed ID: 20722367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helices in peptoids of alpha- and beta-peptides.
    Baldauf C; Günther R; Hofmann HJ
    Phys Biol; 2006 Feb; 3(1):S1-9. PubMed ID: 16582460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces
    Wijaya AW; Nguyen AI; Roe LT; Butterfoss GL; Spencer RK; Li NK; Zuckermann RN
    J Am Chem Soc; 2019 Dec; 141(49):19436-19447. PubMed ID: 31765162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems.
    Gorske BC; Stringer JR; Bastian BL; Fowler SA; Blackwell HE
    J Am Chem Soc; 2009 Nov; 131(45):16555-67. PubMed ID: 19860427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CGenFF-based force field for simulations of peptoids with both cis and trans peptide bonds.
    Weiser LJ; Santiso EE
    J Comput Chem; 2019 Aug; 40(22):1946-1956. PubMed ID: 31062370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Bridged" n→π* interactions can stabilize peptoid helices.
    Gorske BC; Nelson RC; Bowden ZS; Kufe TA; Childs AM
    J Org Chem; 2013 Nov; 78(22):11172-83. PubMed ID: 24050840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rotamer library to enable modeling and design of peptoid foldamers.
    Renfrew PD; Craven TW; Butterfoss GL; Kirshenbaum K; Bonneau R
    J Am Chem Soc; 2014 Jun; 136(24):8772-82. PubMed ID: 24823488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.