BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26584301)

  • 41. Identification of the WNK-SPAK/OSR1 signaling pathway in rodent and human lenses.
    Vorontsova I; Lam L; Delpire E; Lim J; Donaldson P
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):310-21. PubMed ID: 25515571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. KCNE4 can co-associate with the I(Ks) (KCNQ1-KCNE1) channel complex.
    Manderfield LJ; George AL
    FEBS J; 2008 Mar; 275(6):1336-49. PubMed ID: 18279388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterisation of a novel KCNQ1 mutation in a family with Romano-Ward syndrome.
    Zehelein J; Thomas D; Khalil M; Wimmer AB; Koenen M; Licka M; Wu K; Kiehn J; Brockmeier K; Kreye VA; Karle CA; Katus HA; Ulmer HE; Schoels W
    Biochim Biophys Acta; 2004 Nov; 1690(3):185-92. PubMed ID: 15511625
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The residue I257 at S4-S5 linker in KCNQ1 determines KCNQ1/KCNE1 channel sensitivity to 1-alkanols.
    Xie C; Liu HW; Pan N; Ding JP; Yao J
    Acta Pharmacol Sin; 2016 Jan; 37(1):124-33. PubMed ID: 26725740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase.
    Siraskar B; Huang DY; Pakladok T; Siraskar G; Sopjani M; Alesutan I; Kucherenko Y; Almilaji A; Devanathan V; Shumilina E; Föller M; Munoz C; Lang F
    Pflugers Arch; 2013 Feb; 465(2):233-45. PubMed ID: 23179379
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
    Choi SH; Shin TJ; Lee BH; Chu DH; Choe H; Pyo MK; Hwang SH; Kim BR; Lee SM; Lee JH; Kim DH; Kim HC; Rhim HW; Nah SY
    Eur J Pharmacol; 2010 Jul; 637(1-3):138-47. PubMed ID: 20399767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SPAK and OSR1, key kinases involved in the regulation of chloride transport.
    Delpire E; Gagnon KB
    Acta Physiol (Oxf); 2006; 187(1-2):103-13. PubMed ID: 16734747
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Up-regulation of Kir2.1 (KCNJ2) by the serum & glucocorticoid inducible SGK3.
    Munoz C; Pakladok T; Almilaji A; Elvira B; Decher N; Shumilina E; Lang F
    Cell Physiol Biochem; 2014; 33(2):491-500. PubMed ID: 24556932
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.
    Davies M; Fraser SA; Galic S; Choy SW; Katerelos M; Gleich K; Kemp BE; Mount PF; Power DA
    Am J Physiol Renal Physiol; 2014 Jul; 307(1):F96-F106. PubMed ID: 24808538
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis.
    Al-Hazza A; Linley J; Aziz Q; Hunter M; Sandle G
    Biochem Biophys Res Commun; 2016 Feb; 470(2):473-478. PubMed ID: 26718405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability.
    Abbott GW; Tai KK; Neverisky DL; Hansler A; Hu Z; Roepke TK; Lerner DJ; Chen Q; Liu L; Zupan B; Toth M; Haynes R; Huang X; Demirbas D; Buccafusca R; Gross SS; Kanda VA; Berry GT
    Sci Signal; 2014 Mar; 7(315):ra22. PubMed ID: 24595108
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels.
    Strutz-Seebohm N; Henrion U; Steinke K; Tapken D; Lang F; Seebohm G
    Channels (Austin); 2009; 3(2):88-90. PubMed ID: 19372749
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter.
    Gagnon KB; England R; Delpire E
    Mol Cell Biol; 2006 Jan; 26(2):689-98. PubMed ID: 16382158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel.
    Nakajo K; Kubo Y
    J Gen Physiol; 2007 Sep; 130(3):269-81. PubMed ID: 17698596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AMP-activated protein kinase in BK-channel regulation and protection against hearing loss following acoustic overstimulation.
    Föller M; Jaumann M; Dettling J; Saxena A; Pakladok T; Munoz C; Ruth P; Sopjani M; Seebohm G; Rüttiger L; Knipper M; Lang F
    FASEB J; 2012 Oct; 26(10):4243-53. PubMed ID: 22767231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extracellular K
    Penton D; Czogalla J; Wengi A; Himmerkus N; Loffing-Cueni D; Carrel M; Rajaram RD; Staub O; Bleich M; Schweda F; Loffing J
    J Physiol; 2016 Nov; 594(21):6319-6331. PubMed ID: 27457700
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Action potential clamp and mefloquine sensitivity of recombinant 'I KS' channels incorporating the V307L KCNQ1 mutation.
    El Harchi A; McPate MJ; Zhang YH; Zhang H; Hancox JC
    J Physiol Pharmacol; 2010 Apr; 61(2):123-31. PubMed ID: 20436212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of Large Conductance Voltage-and Ca2+-Activated K+ Channels by the Janus Kinase JAK3.
    Warsi J; Singh Y; Elvira B; Hosseinzadeh Z; Lang F
    Cell Physiol Biochem; 2015; 37(1):297-305. PubMed ID: 26303250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structures of the Human SPAK and OSR1 Conserved C-Terminal (CCT) Domains.
    Elvers KT; Lipka-Lloyd M; Trueman RC; Bax BD; Mehellou Y
    Chembiochem; 2022 Jan; 23(1):e202100441. PubMed ID: 34726826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. KCNQ1 and KCNE1 in the IKs channel complex make state-dependent contacts in their extracellular domains.
    Xu X; Jiang M; Hsu KL; Zhang M; Tseng GN
    J Gen Physiol; 2008 Jun; 131(6):589-603. PubMed ID: 18504315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.