These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26584340)

  • 1. New directions for protease inhibitors directed drug discovery.
    Hamada Y; Kiso Y
    Biopolymers; 2016 Nov; 106(4):563-79. PubMed ID: 26584340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral protease inhibitors.
    Anderson J; Schiffer C; Lee SK; Swanstrom R
    Handb Exp Pharmacol; 2009; 189(189):85-110. PubMed ID: 19048198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteases in Mosquito Borne Diseases: New Avenues in Drug Development.
    Pant A; Pasupureddy R; Pande V; Seshadri S; Dixit R; Pandey KC
    Curr Top Med Chem; 2017; 17(19):2221-2232. PubMed ID: 28137230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting the unique features of Zika and Dengue proteases for inhibitor design.
    Majerová T; Novotný P; Krýsová E; Konvalinka J
    Biochimie; 2019 Nov; 166():132-141. PubMed ID: 31077760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases.
    Bobrovs R; Jaudzems K; Jirgensons A
    J Med Chem; 2019 Oct; 62(20):8931-8950. PubMed ID: 31062983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartic peptidase inhibitors: implications in drug development.
    Dash C; Kulkarni A; Dunn B; Rao M
    Crit Rev Biochem Mol Biol; 2003; 38(2):89-119. PubMed ID: 12749695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to find simple and accurate rules for viral protease cleavage specificities.
    Rögnvaldsson T; Etchells TA; You L; Garwicz D; Jarman I; Lisboa PJ
    BMC Bioinformatics; 2009 May; 10():149. PubMed ID: 19445713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors.
    Chang KO; Kim Y; Lovell S; Rathnayake AD; Groutas WC
    Viruses; 2019 Feb; 11(2):. PubMed ID: 30823509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present).
    Cheuka PM; Dziwornu G; Okombo J; Chibale K
    J Med Chem; 2020 May; 63(9):4445-4467. PubMed ID: 31913032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartic proteases in drug discovery.
    Eder J; Hommel U; Cumin F; Martoglio B; Gerhartz B
    Curr Pharm Des; 2007; 13(3):271-85. PubMed ID: 17313361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starving the malaria parasite: inhibitors active against the aspartic proteases plasmepsins I, II, and IV.
    Hof F; Schütz A; Fäh C; Meyer S; Bur D; Liu J; Goldberg DE; Diederich F
    Angew Chem Int Ed Engl; 2006 Mar; 45(13):2138-41. PubMed ID: 16502446
    [No Abstract]   [Full Text] [Related]  

  • 12. Recent advances in plasmepsin medicinal chemistry and implications for future antimalarial drug discovery efforts.
    Meyers MJ; Goldberg DE
    Curr Top Med Chem; 2012; 12(5):445-55. PubMed ID: 22242846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of first-in-class plasmodium OTU inhibitors with potent anti-malarial activity.
    Siyah P; Akgol S; Durdagi S; Kocabas F
    Biochem J; 2021 Sep; 478(18):3445-3466. PubMed ID: 34486667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of potent aspartic protease inhibitors to treat various diseases.
    Nguyen JT; Hamada Y; Kimura T; Kiso Y
    Arch Pharm (Weinheim); 2008 Sep; 341(9):523-35. PubMed ID: 18763714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plerixafor and related macrocyclic amines are potential drug candidates in treatment of malaria by "filling the flap" region of plasmepsin enzymes.
    Abiri A
    Med Hypotheses; 2018 Sep; 118():68-73. PubMed ID: 30037618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of inhibitors against HIV, HTLV-I, and Plasmodium falciparum aspartic proteases.
    Abdel-Rahman HM; Kimura T; Hidaka K; Kiso A; Nezami A; Freire E; Hayashi Y; Kiso Y
    Biol Chem; 2004 Nov; 385(11):1035-9. PubMed ID: 15576323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in targeting viral proteases for the discovery of novel antivirals.
    Steuber H; Hilgenfeld R
    Curr Top Med Chem; 2010; 10(3):323-45. PubMed ID: 20166951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges.
    Roy KK
    Int J Antimicrob Agents; 2017 Sep; 50(3):287-302. PubMed ID: 28668681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picomolar Inhibition of Plasmepsin V, an Essential Malaria Protease, Achieved Exploiting the Prime Region.
    Gambini L; Rizzi L; Pedretti A; Taglialatela-Scafati O; Carucci M; Pancotti A; Galli C; Read M; Giurisato E; Romeo S; Russo I
    PLoS One; 2015; 10(11):e0142509. PubMed ID: 26566224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approaches for dissecting protease functions to improve probe development and drug discovery.
    Deu E; Verdoes M; Bogyo M
    Nat Struct Mol Biol; 2012 Jan; 19(1):9-16. PubMed ID: 22218294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.