BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26584367)

  • 1. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Fedorov DG; Irle S
    J Chem Theory Comput; 2014 Nov; 10(11):4801-12. PubMed ID: 26584367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding.
    Vuong VQ; Nishimoto Y; Fedorov DG; Sumpter BG; Niehaus TA; Irle S
    J Chem Theory Comput; 2019 May; 15(5):3008-3020. PubMed ID: 30998360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2018 Feb; 148(6):064115. PubMed ID: 29448787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method.
    Nakata H; Nishimoto Y; Fedorov DG
    J Chem Phys; 2016 Jul; 145(4):044113. PubMed ID: 27475354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules.
    Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M
    J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems.
    Einsele R; Hoche J; Mitrić R
    J Chem Phys; 2023 Jan; 158(4):044121. PubMed ID: 36725509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Comput Chem; 2017 Mar; 38(7):406-418. PubMed ID: 28114730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons.
    Gaus M; Chou CP; Witek H; Elstner M
    J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB).
    Brandenburg JG; Grimme S
    J Phys Chem Lett; 2014 Jun; 5(11):1785-9. PubMed ID: 26273854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method.
    Witek HA; Morokuma K
    J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium.
    Dolgonos G; Aradi B; Moreira NH; Frauenheim T
    J Chem Theory Comput; 2010 Jan; 6(1):266-78. PubMed ID: 26614337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.