These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26584368)

  • 1. Efficient Calculations with Multisite Local Orbitals in a Large-Scale DFT Code CONQUEST.
    Nakata A; Bowler DR; Miyazaki T
    J Chem Theory Comput; 2014 Nov; 10(11):4813-22. PubMed ID: 26584368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized multi-site local orbitals in the large-scale DFT program CONQUEST.
    Nakata A; Bowler DR; Miyazaki T
    Phys Chem Chem Phys; 2015 Dec; 17(47):31427-33. PubMed ID: 25856306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme.
    Seifert G
    J Phys Chem A; 2007 Jul; 111(26):5609-13. PubMed ID: 17439198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems.
    Aarons J; Skylaris CK
    J Chem Phys; 2018 Feb; 148(7):074107. PubMed ID: 29471650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method of orbital analysis for large-scale first-principles simulations.
    Ohwaki T; Otani M; Ozaki T
    J Chem Phys; 2014 Jun; 140(24):244105. PubMed ID: 24985616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient and near linear scaling pair natural orbital based local coupled cluster method.
    Riplinger C; Neese F
    J Chem Phys; 2013 Jan; 138(3):034106. PubMed ID: 23343267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS.
    Luo Z; Qin X; Wan L; Hu W; Yang J
    Front Chem; 2020; 8():589910. PubMed ID: 33324611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient construction of nonorthogonal localized molecular orbitals in large systems.
    Cui G; Fang W; Yang W
    J Phys Chem A; 2010 Aug; 114(33):8878-83. PubMed ID: 20550205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-space two-electron reduced-density-matrix method: complete active-space calculations without diagonalization of the N-electron Hamiltonian.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2008 Oct; 129(13):134108. PubMed ID: 19045079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A local second-order Møller-Plesset method with localized orbitals: a parallelized efficient electron correlation method.
    Nakao Y; Hirao K
    J Chem Phys; 2004 Apr; 120(14):6375-80. PubMed ID: 15267526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient linear-scaling CCSD(T) method based on local natural orbitals.
    Rolik Z; Szegedy L; Ladjánszki I; Ladóczki B; Kállay M
    J Chem Phys; 2013 Sep; 139(9):094105. PubMed ID: 24028100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptively Compressed Exchange Operator for Large-Scale Hybrid Density Functional Calculations with Applications to the Adsorption of Water on Silicene.
    Hu W; Lin L; Banerjee AS; Vecharynski E; Yang C
    J Chem Theory Comput; 2017 Mar; 13(3):1188-1198. PubMed ID: 28177229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Calculation of Electronic Structure Using O(N) Density Functional Theory.
    Nakata A; Futamura Y; Sakurai T; Bowler DR; Miyazaki T
    J Chem Theory Comput; 2017 Sep; 13(9):4146-4153. PubMed ID: 28714682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variational method for density functional theory calculations on metallic systems with thousands of atoms.
    Ruiz-Serrano Á; Skylaris CK
    J Chem Phys; 2013 Aug; 139(5):054107. PubMed ID: 23927243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct energy functional minimization under orthogonality constraints.
    Weber V; VandeVondele J; Hutter J; Niklasson AM
    J Chem Phys; 2008 Feb; 128(8):084113. PubMed ID: 18315039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient linear scaling procedure for constructing localized orbitals of large molecules based on the one-particle density matrix.
    Guo Y; Li W; Li S
    J Chem Phys; 2011 Oct; 135(13):134107. PubMed ID: 21992282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear-scaling time-dependent density-functional theory in the linear response formalism.
    Zuehlsdorff TJ; Hine ND; Spencer JS; Harrison NM; Riley DJ; Haynes PD
    J Chem Phys; 2013 Aug; 139(6):064104. PubMed ID: 23947840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the electric response of molecular conductors using "electron deformation" orbitals and occupied-virtual electron transfer.
    Mandado M; Ramos-Berdullas N
    J Comput Chem; 2014 Jun; 35(17):1261-9. PubMed ID: 24676839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.