BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26584417)

  • 1. Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant.
    Soule EE; Bompiani KM; Woodruff RS; Sullenger BA
    Nucleic Acid Ther; 2016 Feb; 26(1):1-9. PubMed ID: 26584417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity.
    Bompiani KM; Monroe DM; Church FC; Sullenger BA
    J Thromb Haemost; 2012 May; 10(5):870-80. PubMed ID: 22385910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a Bivalent Thrombin Binding Aptamer and Its Antidote with Improved Properties.
    Hughes QW; Le BT; Gilmore G; Baker RI; Veedu RN
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29048375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications and future of aptamers that achieve rapid-onset anticoagulation.
    Yu H; Frederiksen J; Sullenger BA
    RNA; 2023 Apr; 29(4):455-462. PubMed ID: 36697262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery.
    Nimjee SM; Keys JR; Pitoc GA; Quick G; Rusconi CP; Sullenger BA
    Mol Ther; 2006 Sep; 14(3):408-15. PubMed ID: 16765093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design strategy of antidote sequence for bivalent aptamer: Rapid neutralization of high-anticoagulant thrombin-binding bivalent DNA aptamer-linked M08 with HD22.
    Yoshitomi T; Wakui K; Miyakawa M; Yoshimoto K
    Res Pract Thromb Haemost; 2021 Jun; 5(5):e12503. PubMed ID: 34136744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging applications of aptamers for anticoagulation and hemostasis.
    Chabata CV; Frederiksen JW; Sullenger BA; Gunaratne R
    Curr Opin Hematol; 2018 Sep; 25(5):382-388. PubMed ID: 30015643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity.
    Dyke CK; Steinhubl SR; Kleiman NS; Cannon RO; Aberle LG; Lin M; Myles SK; Melloni C; Harrington RA; Alexander JH; Becker RC; Rusconi CP
    Circulation; 2006 Dec; 114(23):2490-7. PubMed ID: 17101847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures.
    Rangnekar A; Zhang AM; Li SS; Bompiani KM; Hansen MN; Gothelf KV; Sullenger BA; LaBean TH
    Nanomedicine; 2012 Jul; 8(5):673-81. PubMed ID: 21889476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticoagulant characteristics of HD1-22, a bivalent aptamer that specifically inhibits thrombin and prothrombinase.
    Müller J; Freitag D; Mayer G; Pötzsch B
    J Thromb Haemost; 2008 Dec; 6(12):2105-12. PubMed ID: 18826387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA aptamers as reversible antagonists of coagulation factor IXa.
    Rusconi CP; Scardino E; Layzer J; Pitoc GA; Ortel TL; Monroe D; Sullenger BA
    Nature; 2002 Sep; 419(6902):90-4. PubMed ID: 12214238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potent anti-coagulant RNA aptamer inhibits blood coagulation by specifically blocking the extrinsic clotting pathway.
    Gopinath SC; Shikamoto Y; Mizuno H; Kumar PK
    Thromb Haemost; 2006 May; 95(5):767-71. PubMed ID: 16676065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antidote-controlled DNA aptamer modulates human factor IXa activity.
    Fang L; Jin J; Zhang Z; Yu S; Tian C; Luo F; Long M; Zuo H; Lou S
    Bioorg Chem; 2024 Jul; 148():107463. PubMed ID: 38776649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer.
    Musumeci D; Montesarchio D
    Pharmacol Ther; 2012 Nov; 136(2):202-15. PubMed ID: 22850531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples.
    Soule EE; Yu H; Olson L; Naqvi I; Kumar S; Krishnaswamy S; Sullenger BA
    Cell Chem Biol; 2022 Feb; 29(2):215-225.e5. PubMed ID: 35114109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-Nanoscaffold-Assisted Selection of Femtomolar Bivalent Human α-Thrombin Aptamers with Potent Anticoagulant Activity.
    Zhou Y; Qi X; Liu Y; Zhang F; Yan H
    Chembiochem; 2019 Oct; 20(19):2494-2503. PubMed ID: 31083763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Heparin and a FX/Xa Aptamer to Reduce Thrombin Generation in Cardiopulmonary Bypass and COVID-19.
    Chabata CV; Frederiksen JW; Olson LB; Naqvi IA; Hall SE; Gunaratne R; Kraft BD; Que LG; Chen L; Sullenger BA
    Nucleic Acid Ther; 2022 Jun; 32(3):139-150. PubMed ID: 35021888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neutralizable dimeric anti-thrombin aptamer with potent anticoagulant activity in mice.
    Nagano M; Kubota K; Sakata A; Nakamura R; Yoshitomi T; Wakui K; Yoshimoto K
    Mol Ther Nucleic Acids; 2023 Sep; 33():762-772. PubMed ID: 37621412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An anticoagulant with light-triggered antidote activity.
    Heckel A; Buff MC; Raddatz MS; Müller J; Pötzsch B; Mayer G
    Angew Chem Int Ed Engl; 2006 Oct; 45(40):6748-50. PubMed ID: 16983715
    [No Abstract]   [Full Text] [Related]  

  • 20. Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant.
    Huang SS; Wei SC; Chang HT; Lin HJ; Huang CC
    J Control Release; 2016 Jan; 221():9-17. PubMed ID: 26643617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.