BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 26584432)

  • 1. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex.
    Raudies F; Hasselmo ME
    PLoS Comput Biol; 2015 Nov; 11(11):e1004596. PubMed ID: 26584432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling effects on grid cells of sensory input during self-motion.
    Raudies F; Hinman JR; Hasselmo ME
    J Physiol; 2016 Nov; 594(22):6513-6526. PubMed ID: 27094096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grid-Cell Activity on Linear Tracks Indicates Purely Translational Remapping of 2D Firing Patterns at Movement Turning Points.
    Pröll M; Häusler S; Herz AVM
    J Neurosci; 2018 Aug; 38(31):7004-7011. PubMed ID: 29976622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes.
    Diehl GW; Hon OJ; Leutgeb S; Leutgeb JK
    Neuron; 2017 Apr; 94(1):83-92.e6. PubMed ID: 28343867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty.
    Towse BW; Barry C; Bush D; Burgess N
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20130290. PubMed ID: 24366144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.
    Tocker G; Barak O; Derdikman D
    Hippocampus; 2015 Dec; 25(12):1599-613. PubMed ID: 26105192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat.
    Heys JG; Shay CF; MacLeod KM; Witter MP; Moss CF; Hasselmo ME
    J Neurosci; 2016 Apr; 36(16):4591-9. PubMed ID: 27098700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic FPGA-based spatial navigation model with grid cells and place cells.
    Krishna A; Mittal D; Virupaksha SG; Nair AR; Narayanan R; Thakur CS
    Neural Netw; 2021 Jul; 139():45-63. PubMed ID: 33677378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.
    Grossberg S; Pilly PK
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions.
    Shipston-Sharman O; Solanka L; Nolan MF
    J Physiol; 2016 Nov; 594(22):6547-6557. PubMed ID: 27870120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional firing properties of postrhinal cortex neurons.
    Burwell RD; Hafeman DM
    Neuroscience; 2003; 119(2):577-88. PubMed ID: 12770570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Untethered firing fields and intermittent silences: Why grid-cell discharge is so variable.
    Nagele J; Herz AVM; Stemmler MB
    Hippocampus; 2020 Apr; 30(4):367-383. PubMed ID: 32045073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex.
    Pérez-Escobar JA; Kornienko O; Latuske P; Kohler L; Allen K
    Elife; 2016 Jul; 5():. PubMed ID: 27449281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal remapping and grid realignment in entorhinal cortex.
    Fyhn M; Hafting T; Treves A; Moser MB; Moser EI
    Nature; 2007 Mar; 446(7132):190-4. PubMed ID: 17322902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability.
    Agmon H; Burak Y
    Elife; 2020 Aug; 9():. PubMed ID: 32779570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed cells in the medial entorhinal cortex.
    Kropff E; Carmichael JE; Moser MB; Moser EI
    Nature; 2015 Jul; 523(7561):419-24. PubMed ID: 26176924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    PLoS One; 2013; 8(4):e60599. PubMed ID: 23577130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.