These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26584486)

  • 1. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces.
    Wang Y; She X; Liao Y; Li H; Zhang Q; Zhang S; Zheng X; Principe J
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1728-41. PubMed ID: 26584486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.
    Liao Y; Li H; Zhang Q; Fan G; Wang Y; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6513-6. PubMed ID: 25571488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces.
    Liao Y; She X; Wang Y; Zhang S; Zhang Q; Zheng X; Principe JC
    J Neural Eng; 2015 Dec; 12(6):066014. PubMed ID: 26468607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting abrupt change in neuronal tuning via adaptive point process estimation.
    Junjun Chen ; Kai Xu ; Zaiyue Yang ; Yiwen Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4395-4398. PubMed ID: 29060871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.
    Wang Y; Principe JC
    J Neural Eng; 2010 Oct; 7(5):056010. PubMed ID: 20841635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural decoding with visual attention using sequential Monte Carlo for leaky integrate-and-fire neurons.
    Li K; Ditlevsen S
    PLoS One; 2019; 14(5):e0216322. PubMed ID: 31086375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Neural Modulation via Adaptive Point Process Method in Brain-machine Interface.
    Chen S; Zhang X; Shen X; Huang Y; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3078-3081. PubMed ID: 33018655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking the non-stationary neuron tuning by dual Kalman filter for brain machine interfaces decoding.
    Wang Y; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1720-3. PubMed ID: 19163011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking Fast Neural Adaptation by Globally Adaptive Point Process Estimation for Brain-Machine Interface.
    Chen S; Zhang X; Shen X; Huang Y; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1690-1700. PubMed ID: 34410924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural decoding using a parallel sequential Monte Carlo method on point processes with ensemble effect.
    Xu K; Wang Y; Wang F; Liao Y; Zhang Q; Li H; Zheng X
    Biomed Res Int; 2014; 2014():685492. PubMed ID: 24949462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods.
    Ergün A; Barbieri R; Eden UT; Wilson MA; Brown EN
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):419-28. PubMed ID: 17355053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear point-process estimation of neural spiking activity based on variational Bayesian inference.
    Xiao P; Liu X
    J Neural Eng; 2022 Sep; 19(4):. PubMed ID: 35947962
    [No Abstract]   [Full Text] [Related]  

  • 17. Tracking the Time Varying Neural Tuning via Adam on Point Process Observations.
    Zhang Z; Chen S; Yang Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():195-198. PubMed ID: 30440371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity.
    Hu S; Zhang Q; Wang J; Chen Z
    J Neurophysiol; 2018 Apr; 119(4):1394-1410. PubMed ID: 29357468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study.
    Kim KH; Kim SS; Kim SJ
    J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.