These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26584499)
1. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499 [TBL] [Abstract][Full Text] [Related]
2. Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou's general PseAAC. Shen Y; Tang J; Guo F J Theor Biol; 2019 Feb; 462():230-239. PubMed ID: 30452958 [TBL] [Abstract][Full Text] [Related]
3. Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method. Wang T; Yang J Protein Pept Lett; 2010 Jan; 17(1):32-7. PubMed ID: 19508203 [TBL] [Abstract][Full Text] [Related]
4. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC. Zhang S; Liang Y J Theor Biol; 2018 Nov; 457():163-169. PubMed ID: 30179589 [TBL] [Abstract][Full Text] [Related]
5. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC. Dehzangi A; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A J Theor Biol; 2015 Jan; 364():284-94. PubMed ID: 25264267 [TBL] [Abstract][Full Text] [Related]
6. Feature Fusion Based SVM Classifier for Protein Subcellular Localization Prediction. Rahman J; Mondal MN; Islam MK; Hasan MA J Integr Bioinform; 2016 Dec; 13(1):288. PubMed ID: 28187424 [TBL] [Abstract][Full Text] [Related]
7. Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou's general PseAAC via Kullback-Leibler divergence. Liang Y; Zhang S J Theor Biol; 2018 Oct; 454():22-29. PubMed ID: 29857085 [TBL] [Abstract][Full Text] [Related]
8. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC. Zhang S; Duan X J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918 [TBL] [Abstract][Full Text] [Related]
9. Predict protein structural class by incorporating two different modes of evolutionary information into Chou's general pseudo amino acid composition. Liang Y; Zhang S J Mol Graph Model; 2017 Nov; 78():110-117. PubMed ID: 29055184 [TBL] [Abstract][Full Text] [Related]
10. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach. Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100 [TBL] [Abstract][Full Text] [Related]
11. Gram-positive and Gram-negative subcellular localization using rotation forest and physicochemical-based features. Dehzangi A; Sohrabi S; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S1. PubMed ID: 25734546 [TBL] [Abstract][Full Text] [Related]
12. A multiple information fusion method for predicting subcellular locations of two different types of bacterial protein simultaneously. Chen J; Xu H; He PA; Dai Q; Yao Y Biosystems; 2016 Jan; 139():37-45. PubMed ID: 26724384 [TBL] [Abstract][Full Text] [Related]
13. EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features. Uddin MR; Sharma A; Farid DM; Rahman MM; Dehzangi A; Shatabda S J Theor Biol; 2018 Apr; 443():138-146. PubMed ID: 29421211 [TBL] [Abstract][Full Text] [Related]
14. Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising. Yu B; Li S; Qiu WY; Chen C; Chen RX; Wang L; Wang MH; Zhang Y Oncotarget; 2017 Dec; 8(64):107640-107665. PubMed ID: 29296195 [TBL] [Abstract][Full Text] [Related]
15. Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou's PseAAC. Mandal M; Mukhopadhyay A; Maulik U Med Biol Eng Comput; 2015 Apr; 53(4):331-44. PubMed ID: 25564182 [TBL] [Abstract][Full Text] [Related]
16. Accurate prediction of Gram-negative bacterial secreted protein types by fusing multiple statistical features from PSI-BLAST profile. Liang Y; Zhang S; Ding S SAR QSAR Environ Res; 2018 Jun; 29(6):469-481. PubMed ID: 29688029 [TBL] [Abstract][Full Text] [Related]
17. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Yu CS; Lin CJ; Hwang JK Protein Sci; 2004 May; 13(5):1402-6. PubMed ID: 15096640 [TBL] [Abstract][Full Text] [Related]
18. GNBSL: a new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Guo J; Lin Y; Liu X Proteomics; 2006 Oct; 6(19):5099-105. PubMed ID: 16955516 [TBL] [Abstract][Full Text] [Related]
19. MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components. Ahmad J; Hayat M J Theor Biol; 2019 Feb; 463():99-109. PubMed ID: 30562500 [TBL] [Abstract][Full Text] [Related]
20. Subcellular location prediction of apoptosis proteins using two novel feature extraction methods based on evolutionary information and LDA. Du L; Meng Q; Chen Y; Wu P BMC Bioinformatics; 2020 May; 21(1):212. PubMed ID: 32448129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]