These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 26584557)
1. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Kim MJ; Seo JY; Choi YS; Kim GH Waste Manag; 2016 May; 51():168-173. PubMed ID: 26584557 [TBL] [Abstract][Full Text] [Related]
2. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Bahaloo-Horeh N; Mousavi SM Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532 [TBL] [Abstract][Full Text] [Related]
3. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10. Niu Z; Huang Q; Wang J; Yang Y; Xin B; Chen S J Hazard Mater; 2015 Nov; 298():170-7. PubMed ID: 26057441 [TBL] [Abstract][Full Text] [Related]
4. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals]. Yang J; Wang QH; Wang Q; Xue J; Tian SL Huan Jing Ke Xue; 2008 Mar; 29(3):825-30. PubMed ID: 18649552 [TBL] [Abstract][Full Text] [Related]
5. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Santhiya D; Ting YP J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081 [TBL] [Abstract][Full Text] [Related]
6. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Hocheng H; Su C; Jadhav UU Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931 [TBL] [Abstract][Full Text] [Related]
8. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries. Lobos A; Harwood VJ; Scott KM; Cunningham JA J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal removal from contaminated sludge for land application: a review. Babel S; del Mundo Dacera D Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121 [TBL] [Abstract][Full Text] [Related]
10. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. Deng X; Chai L; Yang Z; Tang C; Wang Y; Shi Y J Hazard Mater; 2013 Mar; 248-249():107-14. PubMed ID: 23352906 [TBL] [Abstract][Full Text] [Related]
11. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. Ren WX; Li PJ; Geng Y; Li XJ J Hazard Mater; 2009 Aug; 167(1-3):164-9. PubMed ID: 19232463 [TBL] [Abstract][Full Text] [Related]
12. Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance. Xin B; Jiang W; Li X; Zhang K; Liu C; Wang R; Wang Y Bioresour Technol; 2012 May; 112():186-92. PubMed ID: 22437046 [TBL] [Abstract][Full Text] [Related]
13. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291 [TBL] [Abstract][Full Text] [Related]
14. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration. Xin B; Jiang W; Aslam H; Zhang K; Liu C; Wang R; Wang Y Bioresour Technol; 2012 Feb; 106():147-53. PubMed ID: 22204887 [TBL] [Abstract][Full Text] [Related]
15. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. Kumari A; Lal B; Rai UN Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874 [TBL] [Abstract][Full Text] [Related]
16. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. Faraji F; Golmohammadzadeh R; Rashchi F; Alimardani N J Environ Manage; 2018 Jul; 217():775-787. PubMed ID: 29660703 [TBL] [Abstract][Full Text] [Related]
17. Impact of industrial waste water effluents on mycoflora of the shore sediments of the 3rd oxidation pond, with reference to biosorption of heavy metals. Sharaf EF Acta Microbiol Pol; 2002; 51(3):293-306. PubMed ID: 12588104 [TBL] [Abstract][Full Text] [Related]
18. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
19. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Santhiya D; Ting YP J Biotechnol; 2006 Jan; 121(1):62-74. PubMed ID: 16105700 [TBL] [Abstract][Full Text] [Related]
20. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology. Tanong K; Coudert L; Chartier M; Mercier G; Blais JF Environ Technol; 2017 Dec; 38(24):3167-3179. PubMed ID: 28162038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]